
IJCA Special Issue on “Artificial Intelligence Techniques - Novel Approaches & Practical Applications”

AIT, 2011

17

Trans Genetic Coloring Approach for Timetabling Problem

Mina G. Asham
Computer Engineering

Department , Cairo University,
Giza

Moataz M. Soliman
Computer Engineering

Department , Cairo University,
Giza

Rabie A. Ramadan
Computer Engineering

Department , Cairo University,
Giza

ABSTRACT

Timetable problem is well known problem and is extensively

studied in the literature. There are many variations of the

problem based on the required hard and soft constraints to be

satisfied. One variation of the problem is the exam schedule

which is similar to the course schedule with different

constraints. In this paper, we propose new solution for course

and exam schedule problems base d on University Credit Hour

System (CHS) requirements. Our solution utilizes Graph

Coloring (GC) and Genetic Algorithms (GA) as a hybrid

solution. The test cases used in this paper show the tradeoff

between the running time of the proposed algorithm and its

fitness performance compared to GA and GC algorithms.

General Terms

Time table schedule, Genetic Algorithms, Graph Coloring.

Keywords

Time table schedule, Genetic Algorithms, Graph Coloring,

Genetic Coloring.

1. INTRODUCTION
Timetabling problem [15][11][8][41][48] is one of the well-

known NP-Hard problems that attracted many of the re-

searchers due to its importance in automating the scheduling

process. The problem is a collection of set of courses, available

rooms, students, professors, and set of constraints. These

constraints are usually classified into two classes which are hard

and soft constraints. Hard constraints mean that such constraints

must be satisfied while soft constraints are recommended to be

satisfied but it is not a must. Based on the problem description,

there are many variations of the problem due to the required set

of rules. In fact, we can classify the timetabling problems into

three main classes which are school, course and examination

timetable. Due to the large number of constraints, the course

schedule is considered the hardest problem that might generate

unfeasible solutions [15].

Due to the importance of the timetabling problem, there are

many proposed solutions. For instance, some of the solutions

focus on heuristic algorithms which try to find good

approximate [43], [31], [18], [24], [12], [10], [13], [9], [49],

[34],[33], [36], [35], [38], [39], [37], [27], [5], [2], [42], [46],

[20], [29]. Some other solutions involve Genetic Algorithms

(GA)[7],[19], [26], [6], [3], [44], [30], Tabu Search [25][16],

[21], [17], Simulated Annealing [47], [23], [28], and Scatter

Search [40] methods. In addition, graph coloring is utilized as

one of the solutions [4]. Moreover, recently, Fuzzy Genetic

heuristic is used to solve the timetabling problem[1]. For more

details, the readers are referred to good survey papers at [45],

[32], [22].

Automatic examination timetables were the subject of much

research as well. The problem investigates allocating number of

exams to a limited number of time periods such that none of the

required constraints are violated. Again, the problem involves

hard and soft constraints; however, satisfying the hard

constraints leads to feasible solution to the exam timetabling.

Such constraints are usually different from university to another.

Some examples on the hard constraints are:

- Cannot schedule a student to two different exams at the same

time.

- No unscheduled exam(s) exist at the end of the timetabling

process;

- Based on room capacities, all students must be scheduled.

Examples on soft constraints are:

- Exam A should be scheduled before exam B.

- Avoid consecutive scheduling of two exams for the same

student.

Practically, each university has different hard and soft

constraints as well as different evolution methods to the quality

of the feasible timetable. However, in most of the cases, the

measure of timetable quality is calculated based upon the

number of satisfied soft constraints. In this paper, we investigate

different solutions to both course and exam timetabling

problems. The paper proposes a hybrid solution based on graph

coloring and genetic algorithms. The new solution is compared

to standalone graph coloring and genetic algorithms solutions.

The paper organization is as follows; the problem and its

constraints is described in section 2 ; section 3 discusses graph

coloring and genetic algorithms solutions; in section 4, our

proposed algorithm is presented; section 5 shows the

performance evaluation to the proposed solution; finally, the

paper is concluded in section 6.

2. PROBLEM DESCRIPTION
The problem that we discuss here is generated due to a new

Credit Hour System (CHS) at the School of Engineering at Cairo

University. The system requires automatic timetabling for

course and exam schedule. By investigating both problems, we

tend to develop one solution that can solve both problems with

small tuning. Similar to other timetabling problems, the school

allows students to register to any course provided that finishing

IJCA Special Issue on “Artificial Intelligence Techniques - Novel Approaches & Practical Applications”

AIT, 2011

18

the pre-course requirements. Therefore, the problem comes

from the limited resources at each department at the school of

Engineering. Also, the minimum number of students per class is

15 students. The following are the hard constraints that are

considered:

1. A teacher can teach only one lecture at a time.

2. A student can attend only one lecture at a time.

3. A room can host only one lecture at a time.

4. Each teacher must have all his/her courses scheduled.

5. Each student must have all his/her courses scheduled.

On the other hand, Soft constraints are these constraints that

may be violated; however, it’s not preferable to do so as every

soft constraint violated will decrease the efficiency of the

produced timetable. Examples for these constraints are:

1. A teacher should not teach more than 6 hours a day.

2. A student should not study for more than 8 hours a day.

3. There shouldn’t be gaps in the activity of the teachers.

4. There shouldn’t be gaps in the activity of the students.

Classes timetable consist of six days; Saturday, Sunday,

Monday, Tuesday, Wednesday, and Thursday. Each day consist

of five slots; Slot 1, Slot 2, Slot 3, Slot 4, and Slot 5.

For the exam timetable, some of the previous constraints are

modified such as:

1. A student can’t have more than one exam per day.

2. A student can’t have more than one exam at the same time.

3. There might be more than exam in the same room based on

the size of the room.

4. A teacher cannot monitor more than one exam unless they are

in the same room.

Based on these requirements, the solution has to fulfill the hard

and soft constraints in a reasonable running time.

3. GRAPH COLORING AND GENETIC

ALGORITHMS
Graph Coloring (GC) and Genetic Algorithms (GA) are two of

the solutions that proved to be efficient in producing course

timetable. In this section, we explore the modified version of the

graph coloring and genetic algorithms approaches used for

course timetable given in [4], [14] to fit our timetabling

requirements.

3.1 Graph Coloring Approach
The graph coloring problem is a classical NP-complete problem

in which you are given a graph G= (V, E), where V is the set of

vertices of the graph, and E is the set of edges connecting

vertices of the graph. The degree of a vertex is a value assigned

to each vertex which represents the number of edges connected

to it. While two vertices X and Y are said to be triples if and

only if there exist a vertex Z such that;

 X is connected to Z.

 Y is connected to Z.

 X is not connected to Y.

The approach tends to divide V into the minimum number of

groups, such that:

 Each group is colored with a distinct color.

 All the elements of the same group are colored with the same

color.

 Any two vertices connected with an edge, should have

different colors.

Course/Class timetable automation problem is reduced to a

graph coloring problem. This reduction is done by representing

each class with a vertex in the graph, and there’s an edge

between any two classes if and only if these two classes share a

common student or teacher. As shown in Figure 1, the approach

consists of three phases which are coloring vertices, assigning

rooms and scheduling classes.

Figure 1: Graph coloring phases

In phase 1, as shown in Figure 2, best coloring to the graph

vertices is attempt through 8 steps. In this phase we color the

graph vertices so that no two adjacent vertices have the same

color. In other words, the algorithm tries to figure out all courses

that could be scheduled simultaneously.

The algorithm in Figure 2 consists of one main loop that

continues to execute until no more triples exist in the graph G.

This main loop is the set of instructions from 2 to 7. At step 2,

the vertex with the maximum number of edges connected to it is

selected and named as max, and then the set of triples of that

vertex is fetched to get the maximum degree triple of max and

name it maxTriple. These two selected vertices are merged by

removing maxTriple and connecting max to all vertices

connected to maxTriple. Finally we need to update the degree of

max and check the main loop’s ending condition

IJCA Special Issue on “Artificial Intelligence Techniques - Novel Approaches & Practical Applications”

AIT, 2011

19

1. Let G = the set of all vertices in the graph.

2. Set max = the vertex with the maximum degree.

3. Set maxTriples = the set of all triples of max.

4. Set maxTriple = the vertex with the maximum degree in

maxTriples.

5. Merge max and maxTriple by deleting maxTriple from G and

connecting max with all vertices connected to maxTriple.

6. Update the degree of max.

7. Go to step 2 until no more triples exist in G.

8. Color each group of merged vertices with the same color.

Figure 2: Graph coloring phase 1

1. Let Rooms = the set of all rooms available.

2. Let Groups = the set of all colored groups.

3. For each group grp in Groups:

a. Copy Rooms to temp.

b. Sort grp in ascending order of capacity.

c. For each class cls in grp:

i. Set the room of cls to the smallest room r in

which cls fits.

ii. Remove cls from grp.

iii. Remove r from temp.

d. Remove grp from Groups.

Figure 3: Graph coloring phase 2

1. Let Groups = the set of colored groups.

2. For each group grp in Groups:

a. For each day d in the week:

i. For each slot s in the day:

1. Loop through all students and teachers to

check all soft constraints if grp is assigned

to slot s in day d.

2. If no constraints violated, assign grp to slot

s in day d.

b. If all slots in all days violate constraints, assign

grp to the first empty slot s in day d.

Figure 4: Graph coloring phase 3

IJCA Special Issue on “Artificial Intelligence Techniques - Novel Approaches & Practical Applications”

AIT, 2011

20

In phase 2, room assignment given in Figure 3, apply the room

assignment algorithm to assign rooms to all courses, by

assigning all available rooms to each group of courses colored

with the same color once at a time, till all courses have their

rooms assigned.

At this point, we have a set of groups, each group consists of a

set of non-conflicting classes, and each class is as- signed to a

room in which it best fits. In other words, we have satisfied all

the hard constraints of the problem. Since the graph coloring

technique is only useful in the satisfaction of the hard

constraints, we have no other choice than the brute force

algorithm to satisfy the soft constraints. This is done by a simple

algorithm shown in Figure 4.

3.2 Genetic Algorithms Approach
Genetic Algorithm is a method for solving optimization

problems based on local search. In GA, the solution is generated

by combining parent solutions rather than by modifying a single

solution. The GA is given a set of random solutions to be used

for generating new solutions. Also, it produces the best solution

available when the ending condition is met. Figure 5 shows the

genetic algorithms flowchart.

The process starts with the generation of the initial population;

this is done by generating random chromosomes to be used in

later generations. The algorithm keeps track of some of the best

chromosomes having the best fitness function in order not to be

deleted. If the best fitness meets the GA stopping criteria, it

terminates; otherwise, it goes through the crossover and

mutation processes. Due to the randomness in the crossover

and mutation , some of the chromosomes might violate the

course rules; for instance, a course might exist more than one

time or even doesn’t exist at all in the chromosome (the number

of times in which the class is scheduled is not equal to 1).

Therefore, chromosome repair process is added to the GA to fix

such problems. The pseudo code for the genetic algorithm is

shown in Figure 6.

For the GA to work properly, there are three main important

decisions have to be carefully taken. The first decision is the

chromosome structure and the second is fitness/evaluation

function while the third is the stopping criterion. In this paper,

we selected the chromosome structure as the class timetable as

depicted in Figure 7. In other word, a chromosome represents a

valid and efficient class/exam schedule. At the same time, since

the GA is used to solve the whole problem, therefore it should

satisfy all of the hard constraints, and as much as possible of the

soft constraints. Therefore, the fitness function, or the cost

function, is selected to be a compound function that consists of

two values, a hardFitness for the number of hard constraints

violated, and a softFitness for the number of soft constraints

violated. These two values are added together to give the fitness

function. The third important factor i s the stopping condition,

which is (hardFitness == 0 && softFitness < max) where max is

the maximum allowable value for the number of soft constraints

to be violated. This value is chosen experimentally. Other

important parameters should be chosen such as; the number of

iterations, type of crossover and probability, mutation

percentage, population size, number of best chromosomes per

iteration to keep, and number of new off-springs generated per

iteration.

Figure 5: Genetic algorithm concept

IJCA Special Issue on “Artificial Intelligence Techniques - Novel Approaches & Practical Applications”

AIT, 2011

21

1. Insert random chromosomes into the population until

it’s full.

2. While the ending condition is not met, do

a. Remove some of the chromosomes available.

b. Select two chromosomes by random.

c. Cross them over to get a new offspring.

d. Mutate the new offspring.

e. Repair the new offspring.

f. Evaluate the fitness function of the new

offspring and add it to the population.

g. Go to “b” until the population is full.

h. Check the resetting condition, if met; replace

all non-best chromosomes in the population with

new randomly generated ones.

Figure 6: Genetic algorithm pseudo code

Figure 7: Genetic algorithms chromosome structure

3.3 Genetic Coloring
In this section, we propose to utilize both GC and GA for

solving both class and exam timetabling problems. Based on our

experience in using GA and GC in timetabling, we could

summarize some of the drawbacks in both algorithms as follow:

1. GC uses a brute force algorithm to satisfy the soft constraints

which is not good idea especially with large problem sizes.

2. GC assigns the class/course to the first empty slot if all slots

violate one or more of the soft constraints.

3. In GA, the chromosome length increases with the increase of

the problem size. For instance, in our case, the chromosome

length could be 30*n (6 days * 5 slots), where n is the number

of rooms. Assume n=100, therefore, the chromosome length

will be 3000 genes which is very large. Certainly, this affects

the chromosome processing and the overall GA running time.

4. GA should wait till the hardFitness value converges to zero

which might take long time.

To solve these problems, we propose to use GC to satisfy the

hard constraints and GA to satisfy the soft constraints. We

believe that such combination will enhance the efficiency of the

timetabling solution(s) as well as to reduce the running time in

most of the cases. Therefore, no brute force is required for the

soft constraints satisfaction. In addition genetic coloring assigns

the class to the slot that minimizes the number of violated soft

constraints. Moreover, the chromo- some length will be reduced

to a constant value, (30 *6 days * 5 slots). Nevertheless, genetic

coloring doesn’t even check the hardFitness value as it is surely

ZERO.

Figure 8: Genetic coloring phases

Similarly, genetic coloring algorithm consists of three phases as

shown in figure 8. The problem is first reduced into a graph

coloring problem and solve accordingly. This is similar to the

first phase in graph coloring solution explained in section 3.1.

The second phase is the room assignment which also similar to

the second phase in graph coloring approach explained in

section 3.1. The pseudo code for both phases is depicted in

Figures 2 and 3 respectively. Here, it comes the role of the GA

to work on the soft constraints. The output of phase 2 is a set of

colored groups. The target of the genetic algorithm is to find the

best way to assign these colored groups to the timetable’s slots

minimizing the number of soft constraints violated. The pseudo

code for the phase 3, GA, is given in Figure 9. In this phase, the

same GA process, explained before, takes place. The process

includes the crossover, mutation, the repair procedure, and the

fitness function evaluation. However, the GA process this time

differs from the one stated before because of the change in some

settings.

IJCA Special Issue on “Artificial Intelligence Techniques - Novel Approaches & Practical Applications”

AIT, 2011

22

Figure 9: Genetic coloring phase 3

Figure 10: Genetic Coloring chromosome structure

The new chromosome structure is reduced to the number of days

multiplied by the number of slots per day as shown in Figure 10.

The fitness function, since the genetic algorithm will be used to

satisfy the soft constraints only, there’s no need to have a

compound functions. Therefore the fitness function will be only

the number of violated soft constraints. In addition, the stopping

criterion is changed to be based only on the condition of

softFitness < max, where max is the maximum allowable value

for the number of soft constraints to be violated. This number

we choose based on our simulation as we will show later in the

simulation results. Other parameters stated previously in the GA

section may have different value, depending on the used test

cases.

4. EXPERIMENTS
In this section, we study the performance of hybrid of genetic

and graph coloring algorithms compared to the GA and GC as

standalone solutions to the timetabling problems. We

implemented the three algorithms for this purpose and de-

signed some of the test cases to measure their performances. All

of the experiments done in this paper were implemented on Intel

Quad Core 2.83GHz processor, with 12 MB cache, and

Windows 7 32-bit having 4 GB of RAM. Our implementation

utilized C# dot Net on dot Net framework 4 under Visual Studio

2010. In addition, to have fair comparisons among the proposed

algorithms, we tested the Genetic algorithm in many test cases

and found , on average, the best results produced when 1)

mutation percentage equal to 1% , 2) maximum number of

iterations equal to 1000, and 3) number of chromosomes in the

population is equal to 30.

4.1 Test Case 1: Department Scope
This test case considers small size problem which we call it

“department scope”. This scope considers only 250 students, 20

professors, 70 courses, and 20 rooms. In fact, this is the actual

size of our computer department. In terms of average running

time, Figure 11 shows that graph coloring algorithm is the least

running time while genetic algorithm takes almost 46 seconds to

reach a suitable solution which is the worst among the three

algorithms. At the same time, the genetic coloring time is not

considered bad compared to the genetic algorithm but still worth

than the graph coloring algorithm. However, Figure 12 shows

another point of view in terms of the algorithms performance.

For instance, as can be seen, it does not mean that because of the

graph coloring algorithm is taking the least time, it produces the

best timetable in terms of performance. In fact, Genetic coloring

approach gives the best performance while the graph coloring

algorithm violates most of the soft constraints. In addition,

Genetic Coloring is something in between in terms of

performance of other algorithms while its running time is very

small compared to the Genetic Algorithm running time.

IJCA Special Issue on “Artificial Intelligence Techniques - Novel Approaches & Practical Applications”

AIT, 2011

23

Figure 11: Running time of the three algorithms in terms of

department scope

Figure 12: Fitness comparison of the three algorithms in

terms of department scope

4.2 Test Case 2: Faculty Scope
Here, again, we test the performance of the three algorithms

with medium size problems in which we call it “faculty scope”.

The faculty scope used in this section are about 500 students, 40

professors, 40 teaching assistance, 140 courses, and 40 rooms.

In terms of running time, the results as shown in Figure 13 is

similar to the department results where genetic algorithm is the

most time consuming algorithm. Graph coloring still better than

the Genetic coloring by almost half of the time. However, both

graph coloring and genetic coloring are much better than the

genetic algorithm by almost 14 times. On the other hand, in

terms of the algorithms fitness, genetic coloring, as shown in

Figure 14 is somehow between the genetic and graph coloring.

Therefore, it is a tradeoff between the time and fitness.

Figure 13: Running time of the three algorithms in terms of

Faculty scope

Figure 14: Fitness comparison of the three algorithms in

terms of Faculty scope

4.3 Test Case 3: University Scope
Another test case is examined in this section for a university

scope in which problems with 750 students, 60 professors, 60

teaching assistance, 210 courses, and 60 rooms are inspected. In

terms of running time, Figure 15, it seems that the running time

is doubled compared to the faculty scope problems. For

instance, the genetic algorithm takes almost 7 hours to produce a

solution. However, genetic algorithm still over fits both graph

coloring and genetic coloring algorithms in terms of

performance as shown in Figure 16. At the same time, genetic

coloring is much better than graph coloring algorithm.

Figure 15: Running time of the three algorithms in terms of

University scope

Figure 16: Fitness comparison of the three algorithms in

terms of University scope

IJCA Special Issue on “Artificial Intelligence Techniques - Novel Approaches & Practical Applications”

AIT, 2011

24

5. CONCLUSION
In this paper, we compared between different techniques for

timetabling problem including the exam timetabling. We

introduced three algorithms which are graph coloring, genetic

algorithms, and genetic coloring as a hybrid algorithm. Graph

Coloring and Genetic Algorithms are modified from previous

algorithms while the Genetic Coloring algorithm is the one we

proposed in this paper. After the implementation to the

algorithms, we experimented with different test cases through

different problem scopes, department, faculty, and university

scopes. Our results show that although our Genetic Coloring

was not the best algorithm in terms in its fitness in most of the

cases, however, it is better than the GA in terms of running time

and better than Graph coloring in terms of fitness performance.

6. REFERENCES
[1] A. Chaudhuri and D. Kajal, “Fuzzy Genetic Heuristic for

University Course Timetable Problem,” Int.J.Advance. Soft

Computing. Applications, Vol. 2, No. 1, March 2010 ISSN

2074-8523; 2010.

[2] B. Paechter, A. Cumming,M. G. Norman and H. Luchian,

“Extensionsto a Memetic Timetabling System”,

Proceedings of the 1st In ternational Confe- rence on the

Practice and Theory of Automated Timetabling, (1995)

[3] B.Sigl,M.Golub,andV.Mornar,“SolvingTimetableSchedulin

gProblemUsingGeneticAlgorithms”,25thInternationalConfe

rence Information Tech- nology Interfaces, Cavtat, Croatia,

(2003).

[4] Burke E.K., Elliman D.G. and Weare R.F. (1993) “A

University Timetabling System Based on Graph Colouring

and Constraint Manip ulation”, in the Journal of Research

on Computing in Education. Vol. 26.issue 4.

[5] C.Marco,B.Mauro and S. Krzysztof, “An Effective Hybrid

Algorithm forUniversity Course Timetabling”, Journal of

Scheduling, Vol.9, No.5, (2006), pp.403-432.

[6] C.Reeves, “Genetic Algorithms”, Modern Heuristic

Techniques for Combinatorial Problems, V. J. Rayward-

Smith (Editors), McGraw-Hill International, UK, (1995),

pp.151-196.

[7] D. Corne, H. S. Fang and C. Mellish, “Solving the Modular

Exam Scheduling Problem with Genetic Algorithms”,

Proceedings of the 6th International Conference of

Industrial and Engineering Applications of Artificial

Intelligence and Expert Systems, Edinburgh, (1993).

[8] D. De Werra, “An introduction to Time tabling”, European

Journal of Operations Research, Vol.19, (1985),pp.151-

162.

[9] D. Dubois and H. Prade, Possibility Theory: an Approach

to Computerized Processing of Uncertainty, New York,

(1988).

[10] E.K.BrukeandJ. P.Newall, “Solving Examination

Timetabling Problems through Adaptation of Heuristic

Orderings”, Annals of Operations Research,Vol.129,

(2004), pp.107-134.

[11] E.K.BrukeandS.Petrovic,“RecentResearchdirectionsinAuto

matedTimetabling”,EuropeanJournalofOperationalResearc

h, Vol.140, No.2, (2002), pp.266-280.

[12] E.K.BurkeandJ.P.Newall,“A New Adaptive Heuristic

Framework for Examination Timetabling Problems”,

University of N ottingham, Working Group on Automated

Timetabling, TR–2002-1, (2002).

[13] E. K. Burke, B. McCollum and A. Meisels, “A Graph based

Hyper Heuristic for Educational Timetabling Problems”,

European Journal of O perational Research, Vol.176, No.1,

(2007), pp.177-192.

[14] E.K. Burke, D. Elliman, R. Weare, A genetic algorithm

based university timetabling system, in: Proceedings of the

2nd East-West International Confe- rence on Computers in

Education, Crimea, Ukraine, 19th–23rd September 1994,

vol. 1, (1994), pp. 35–40.

[15] Even, S. Itai, A., & Shamir, A., On the Complexity of

timetabling and multicommodity flow problems, SIAM

Journal of Computation, Vol.5, No.4, 1976, pp.691-703.

[16] G.Kendall and N.M.Hussain, “A Tabu Search Hyper

Heuristic Approach to the Examination Time tabling

Problem at the MARA University of Technology”, Lecture

Notes in Computer Science, Springer Verlag, Vol.3616,

(2005), pp.270- 293.

[17] G.White,B.XieandS.Zonjic,“UsingTabuSearchwithLonger

TermMemoryandRelaxationtocreateExaminationTimetable

s”,EuropeanJournalofOperational Research, Vol.153,

No.16, (2004), pp.80-91.

[18] H. Asmuni, E. K. Burke and J.Garibaldi, “Fuzzy Multiple

Heuristic Ordering for Course Timetabling”, Proceedings

of the 5th United Kingdom Workshop on Computational

Intelligence, London, (2005).

[19] J.F.GonçalvesandJ.R.DeAlmeida,“A Hybrid Genetic

Algorithm for Assembly Line Balancing”, Journal of

Heuristics,Vol.8,(2002),pp.629-642.

[20] K. Socha, J. Knowles and M. Samples, “A Max-Min Ant

System for the University Course Timetabling Problem”,

Proceedings of the 3rd International Workshop on Ant

Algorithms, Lecture Notes in Computer Science, Springer

Verlag, Vol.2463, (2002), pp.1-13.

[21] L. M. Mooney, Tabu Search Heuristics for Resource

Scheduling with Course Scheduling Applications, PhD

Dissertation, Purdue Un iversity, (1991).

[22] Lewis, R. (2008) 'A Survey of Metaheuristic-based

Techniques for University Timetabling Problems'. OR

Spectrum, vol. 30(1), pp 167-190.

[23] M.A.SalehandP.Coddington,“AComparisonofAnnealingtec

hniquesforAcademicCourseScheduling”,LectureNotesinCo

mputerScience,SpringerVerlag, Vol. 1408, (1998), pp.92-

114.

[24] M. Battarra, B. Golden and D. Vigo, “Tuning a Parametric

Clarke-Wright Heuristic via a Genetic Algorithm”,

Università di Bologna, Dipartimento di

IJCA Special Issue on “Artificial Intelligence Techniques - Novel Approaches & Practical Applications”

AIT, 2011

25

ElettronicaInformatica e Sistemistica, TR-DEIS

OR.INGCE 2006/1R, (2006).

[25] M.GendreauandJ.Potvin,"TabuSearch”,IntroductoryTutoria

lsinOptimization,DecisionSupportandSearchMethodology,

E. K. Burke and G. Ken- dall (Editors), Springer Verlag,

Chapter 6, (2005), pp.165-186.

[26] M.Omar,R.N.Ainon,andR.Zainuddin,“UsingaGeneticAlgor

ithmOptimizerTooltogenerategoodqualityTimetables”,Proc

eedingsofthe10thIEEE International Conference,

Electronics, Circuits and Systems, Vol.3, (2003), pp.1300-

1303.

[27] M.R.Malim,A.T.KhaderandAMustafa,“ArtificialImmuneAl

gorithmsforUniversityTimetabling”,Proceedings of the 6th

International Conference on the Practice and Theory of

Automated Timetabling, Czech Republic, (2006).

[28] M.Tuga,R.BerrettaandA.Mendes,“AHybridSimulatedAnne

alingwithKempeChainNeighborhoodfortheUniversityTimet

ablingProblem”,Com- puter and Information Science,

(2007).

[29] N.D.Thanh,“SolvingTimetablingProblemusingGeneticand

HeuristicAlgorithms”,Proceedings of 8th ACIS

International Conference, (2007).

[30] N.D.Thanh,“SolvingTimetablingProblemusingGeneticand

HeuristicAlgorithms”,Proceedingsof8thACISInternationalC

onference,(2007).

[31] P.AdamidisandP.Arapakis,“EvolutionaryAlgorithmsinLect

ureTimetabling”,Proceedingsofthe1999IEEECongressonEv

olutionary Computation, (1999), pp.1145-1151.

[32] P. De Causmaecker, P. Demeester, G. VandenBerghe:

Evaluation of the University Course Timetabling Problem

with the Linear Numberings Method, UK Plan SIG 2006,

Nottingham, 14-15 December 2006, pp. 154-155.

[33] P.Kostuch,“TheUniversityCourseTimetablingProblemwitha

3-

phaseApproach”,Proceedingsofthe5thInternationalConferen

ce on the Practice and Theory of Automated Timetabling,

E. K. Burke, M. Trick, (Editors), Lecture Notes in

Computer Science, Springer Verlag, Vol.3616, (2005),

pp.109–125.

[34] P.Kostuch,“TheUniversityCourseTimetablingProblemwitha

3-stage

Approach”,Proceedingsofthe5thInternationalConferenceont

hePractice and Theory of Automated Timetabling, (2004),

pp.251-266.

[35] R. Lewis andB. Paechter, “Application of the Grouping

Genetic Algorithm to University Course Timetabling”,

Evolutionary Comp utation in Combina- torial

Optimization, V. G. Raidl and J. Gottlieb, (Editors),

Lecture Notes in Computer Science, Springer Verlag,

Vol.3448, (2005), pp.144-153.

[36] R.LewisandB.Paechter,“NewCrossoverOperatorsforTimeta

blingwithEvolutionary

Algorithms”,5thInternationalConferenceonRecentAdvances

in Soft Computing, Nottingham, England, (2004).

[37] R.Lewis,“ASurveyofMetaheuristicbasedtechniquesforUniv

ersityTimetablingproblems”,ORSpectrum,Vol.30,(2008),pp

.1 67-190.

[38] R.Lewis,“MetaheuristicsforUniversityCourseTimetabling”

PhDThesis,SchoolofComputing,NapierUniversity,Edinburg

h, (2006).

[39] R. Lewis, B. Paechter and B. McCollum, “Post Enrolment

based Course Timetabling: A description of the Problem

Model used for Track Two of the

SecondInternationalTimetabling”,CardiffUniversity,Cardiff

Business School, Accounting and Finance Section, (2007).

[40] R. Marti, H. Lourenco and M. Laguna, “Assigning Proctors

to Exams with Scatter Search”, Economics Working Paper

Seri es No.534, Department of Economics and Business,

Universitat Pompeu Fabr, (2001).

[41] R.QuandE.K.Burke,“AdaptiveDecompositionandConstructi

onforExaminationTimetablingProblems”,MultidisciplinaryI

nternational Scheduling: Theory and Applications, P.

Baptiste, G. Kendall, A. Munier-Kordon, F. Sourd,

(Editors.), (2007), pp.418-425.

[42] R. Qu and E. K. Burke, “Adaptive Decomposition and

Construction for Examination Timetabling Problems”,

Multidisciplinary International Scheduling: Theory and

Applications, P. Baptiste, G. Kendall, A. Munier-Kordon,

F. Sourd, (Editors.), (2007), pp.418-425.

[43] S.Abdullah,E.K.BurkeandB.McCollum,“A Hybrid

Evolutionary Approach to the University Course

Timetabling Problem”, Proc eedings of the IEEE Congress

on Evolutionary Computation, Singapore, (2007).

[44] S.O.TasanandS.Tunali,“A Review of the Current

Applications of Genetic Algorithms in Assembly Line

Balancing”, Journalof Intelligent Manufactur- ing, Vol.19,

(2008), pp.49-69.

[45] Schaerf A., A Survey of Automated Timetabling, Tech.

rep. CS-R9567, CWI, Amsterdam,(1995).

[46] Scholl and C. Becker, “State-of-the-art Exact and Heuristic

solution procedures for Simple Assembly Line Balancing”,

European Journal of Operation Research, Vol.168, (2006),

pp.666-693.

[47] T. Duong and K. Lam, “CombiningConstraint

Programming and Simulated Annealing on University

Exam Timetabling”, Proceedings o f RIVF Confe- rence,

Hanoi, Vietnam, (2004).

[48] Wren, Scheduling, “Timetabling and Rostering– A Special

Relationship!”, The Practiceand Theory of Automated

Timetabling:Selected Papers from the 1st Int'l Conf. on the

Practice and Theory of Automated Timetabling, E. K.

Burke, P. Ross (Editors), Lecture Notes in Computer

Science, Springer Verlag, Vol.1153, (1996), pp.46-75.

[49] Z. W. Geem, “School Bus Routing using Harmony

Search”, Proceedings of Genetic and Evolutionary

Computation Conference, Washington, D.C., (2005).

