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ABSTRACT 

Timetable problem is well known problem and is extensively 

studied in the literature. There are many variations of the 

problem based on the required hard and soft constraints to be 

satisfied.  One variation of the problem is the exam schedule 

which is similar to the course schedule with different 

constraints. In this paper, we propose new solution for course 

and exam schedule problems base d on University Credit Hour 

System (CHS) requirements. Our solution utilizes Graph 

Coloring (GC) and Genetic Algorithms (GA) as a hybrid 

solution. The test cases used in this paper show the tradeoff 

between the running time of the proposed algorithm and its 

fitness performance compared to GA and GC algorithms.   
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Time table schedule, Genetic Algorithms, Graph Coloring. 

Keywords 
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1. INTRODUCTION 
Timetabling problem [15][11][ 8][41][48] is one of the well-

known NP-Hard problems that attracted many of the re- 

searchers due to its importance in automating the scheduling 

process. The problem is a collection of set of courses, available 

rooms, students, professors, and set of constraints. These 

constraints are usually classified into two classes which are hard 

and soft constraints. Hard constraints mean that such constraints 

must be satisfied while soft constraints are recommended to be 

satisfied but it is not a must. Based on the problem description, 

there are many variations of the problem due to the required set 

of rules.  In fact, we can classify the timetabling problems into 

three main classes which are school, course and examination 

timetable.  Due to the large number of constraints, the course 

schedule is considered the hardest problem that might generate 

unfeasible solutions [15]. 

Due to the importance of the timetabling problem, there are 

many proposed solutions. For instance, some of the solutions 

focus on heuristic algorithms which try to find good 

approximate [43], [31], [18], [24], [12], [10], [13], [9], [49], 

[34],[33], [36], [35], [38], [39], [37], [27], [5], [2], [42], [46], 

[20], [29]. Some other solutions involve Genetic Algorithms 

(GA)[7],[19], [26], [6], [3], [44], [30], Tabu Search [25][16], 

[21], [17], Simulated Annealing  [47], [23], [28], and Scatter 

Search [40] methods. In addition, graph coloring is utilized as 

one of the solutions [4]. Moreover, recently, Fuzzy Genetic 

heuristic is used to solve the timetabling problem[1]. For more 

details, the readers are referred to good survey papers at [45], 

[32], [22]. 

Automatic examination timetables were the subject of much 

research as well. The problem investigates allocating number of 

exams to a limited number of time periods such that none of the 

required constraints are violated.  Again, the problem involves 

hard and soft constraints; however, satisfying the hard 

constraints leads to feasible solution to the exam timetabling. 

Such constraints are usually different from university to another. 

Some examples on the hard constraints are: 

- Cannot schedule a student to two different exams at the same 

time. 

- No unscheduled exam(s) exist at the end of the timetabling 

process; 

- Based on room capacities, all students must be scheduled. 

Examples on soft constraints are: 

- Exam A should be scheduled before exam B. 

- Avoid consecutive scheduling of two exams for the same 

student. 

Practically, each university has different hard and soft 

constraints as well as different evolution methods to the quality 

of the feasible timetable. However, in most of the cases, the 

measure of timetable quality is calculated based upon the 

number of satisfied soft constraints. In this paper, we investigate 

different solutions to both course and exam timetabling 

problems. The paper proposes a hybrid solution based on graph 

coloring and genetic algorithms.  The new solution is compared 

to standalone graph coloring and genetic algorithms solutions. 

The paper organization is as follows; the problem and its 

constraints is described in section 2 ; section 3 discusses graph 

coloring and genetic algorithms solutions; in section 4, our 

proposed algorithm is presented; section 5 shows  the 

performance evaluation to the proposed solution; finally, the 

paper is concluded in section 6.  

 

2. PROBLEM DESCRIPTION 
The problem that we discuss here is generated due to a new 

Credit Hour System (CHS) at the School of Engineering at Cairo 

University. The system requires automatic timetabling for 

course and exam schedule. By investigating both problems, we 

tend to develop one solution that can solve both problems with 

small tuning.  Similar to other timetabling problems, the school 

allows students to register to any course provided that finishing 
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the pre-course requirements.  Therefore, the problem comes 

from the limited resources at each department at the school of 

Engineering. Also, the minimum number of students per class is 

15 students. The following are the hard constraints that are 

considered: 

1. A teacher can teach only one lecture at a time. 

2. A student can attend only one lecture at a time. 

3. A room can host only one lecture at a time. 

4. Each teacher must have all his/her courses scheduled. 

5. Each student must have all his/her courses scheduled. 

On the other hand, Soft constraints are these constraints that 

may be violated; however, it’s not preferable to do so as every 

soft constraint violated will decrease the efficiency of the 

produced timetable. Examples for these constraints are: 

1. A teacher should not teach more than 6 hours a day. 

2. A student should not study for more than 8 hours a day. 

3. There shouldn’t be gaps in the activity of the teachers. 

4. There shouldn’t be gaps in the activity of the students. 

Classes timetable consist of six days; Saturday, Sunday, 

Monday, Tuesday, Wednesday, and Thursday. Each day consist 

of five slots; Slot 1, Slot 2, Slot 3, Slot 4, and Slot 5. 

For the exam timetable, some of the previous constraints are 

modified such as: 

1. A student can’t have more than one exam per day. 

2. A student can’t have more than one exam at the same time. 

3. There might be more than exam in the same room based on 

the size of the room. 

4. A teacher cannot monitor more than one exam unless they are 

in the same room. 

Based on these requirements, the solution has to fulfill the hard 

and soft constraints in a reasonable running time. 

3. GRAPH COLORING AND GENETIC 

ALGORITHMS 
Graph Coloring (GC) and Genetic Algorithms (GA) are two of 

the solutions that proved to be efficient in producing course 

timetable. In this section, we explore the modified version of the 

graph coloring and genetic algorithms approaches used for 

course timetable given in [4], [14] to fit our timetabling 

requirements. 

3.1 Graph Coloring Approach 
The graph coloring problem is a classical NP-complete problem 

in which you are given a graph G= (V, E), where V is the set of 

vertices of the graph, and E is the set of edges connecting 

vertices of the graph. The degree of a vertex is a value assigned 

to each vertex which represents the number of edges connected 

to it. While two vertices X and Y are said to be triples if and 

only if there exist a vertex Z such that; 

 X is connected to Z. 

 Y is connected to Z. 

 X is not connected to Y. 

The approach tends to divide V into the minimum number of 

groups, such that: 

 Each group is colored with a distinct color. 

 All the elements of the same group are colored with the same 

color. 

 Any two vertices connected with an edge, should have 

different colors. 

Course/Class timetable automation problem is reduced to a 

graph coloring problem. This reduction is done by representing 

each class with a vertex in the graph, and there’s an edge 

between any two classes if and only if these two classes share a 

common student or teacher. As shown in Figure 1, the approach 

consists of three phases which are coloring vertices, assigning 

rooms and scheduling classes. 

 

 

Figure 1: Graph coloring phases 

 

In phase 1, as shown in Figure 2, best coloring to the graph 

vertices is attempt through 8 steps. In this phase we color the 

graph vertices so that no two adjacent vertices have the same 

color. In other words, the algorithm tries to figure out all courses 

that could be scheduled simultaneously. 

The algorithm in Figure 2 consists of one main loop that 

continues to execute until no more triples exist in the graph G. 

This main loop is the set of instructions from 2 to 7. At step 2, 

the vertex with the maximum number of edges connected to it is 

selected and named as max, and then the set of triples of that 

vertex is fetched to get the maximum degree triple of max and 

name it maxTriple. These two selected vertices are merged by 

removing maxTriple and connecting max to all vertices 

connected to maxTriple. Finally we need to update the degree of 

max and check the main loop’s ending condition 
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1. Let G = the set of all vertices in the graph. 

2. Set max = the vertex with the maximum degree. 

3. Set maxTriples = the set of all triples of max. 

4. Set maxTriple = the vertex with the maximum degree in 

maxTriples. 

5. Merge max and maxTriple by deleting maxTriple from G and 

connecting max with all vertices connected to maxTriple. 

6. Update the degree of max. 

7. Go to step 2 until no more triples exist in G. 

8. Color each group of merged vertices with the same color. 

 
 

Figure 2: Graph coloring phase 1 

 

1. Let Rooms = the set of all rooms available. 

2. Let Groups = the set of all colored groups. 

3. For each group grp in Groups: 

a. Copy Rooms to temp. 

b. Sort grp in ascending order of capacity. 

c. For each class cls in grp: 

i. Set the room of cls to the smallest room r in 

which cls fits. 

ii. Remove cls from grp. 

iii. Remove r from temp. 

d. Remove grp from Groups. 
 

Figure 3: Graph coloring phase 2 

 

 

1. Let Groups = the set of colored groups. 

2. For each group grp in Groups: 

a. For each day d in the week: 

i. For each slot s in the day: 

1. Loop through all students and teachers to 

check all soft constraints if grp is assigned 

to slot s in day d. 

2. If no constraints violated, assign grp to slot 

s in day d. 

b. If all slots in all days violate constraints, assign 

grp to the first empty slot s in day d. 

 

Figure 4: Graph coloring phase 3
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In phase 2, room assignment given in Figure 3, apply the room 

assignment algorithm to assign rooms to all courses, by 

assigning all available rooms to each group of courses colored 

with the same color once at a time, till all courses have their 

rooms assigned. 

At this point, we have a set of groups, each group consists of a 

set of non-conflicting classes, and each class is as- signed to a 

room in which it best fits. In other words, we have satisfied all 

the hard constraints of the problem. Since the graph coloring 

technique is only useful in the satisfaction of the hard 

constraints, we have no other choice than the brute force 

algorithm to satisfy the soft constraints. This is done by a simple 

algorithm shown in Figure 4. 

3.2 Genetic Algorithms Approach 
Genetic Algorithm is a method for solving optimization 

problems based on local search. In GA, the solution is generated 

by combining parent solutions rather than by modifying a single 

solution. The GA is given a set of random solutions to be used 

for generating new solutions. Also, it produces the best solution 

available when the ending condition is met. Figure 5 shows the 

genetic algorithms flowchart. 

The process starts with the generation of the initial population; 

this is done by generating random chromosomes to be used in 

later generations. The algorithm keeps track of some of the best 

chromosomes having the best fitness function in order not to be 

deleted.  If the best fitness meets the GA stopping criteria, it 

terminates; otherwise, it goes through the crossover and 

mutation processes.   Due to the randomness in the crossover 

and mutation , some of the chromosomes might violate the 

course rules; for instance, a course might exist more than one 

time or even doesn’t exist at all in the chromosome (the number 

of times in which the class is scheduled is not equal to 1). 

Therefore, chromosome repair process is added to the GA to fix 

such problems. The pseudo code for the genetic algorithm is 

shown in Figure 6. 

For the GA to work properly, there are three main important 

decisions have to be carefully taken. The first decision is the 

chromosome structure and the second is fitness/evaluation 

function while the third is the stopping criterion.  In this paper, 

we selected the chromosome structure as the class timetable as 

depicted in Figure 7. In other word, a chromosome represents a 

valid and efficient class/exam schedule.  At the same time, since 

the GA is used to solve the whole problem, therefore it should 

satisfy all of the hard constraints, and as much as possible of the 

soft constraints.  Therefore, the fitness function, or the cost 

function, is selected to be a compound function that consists of 

two values, a hardFitness for the number of hard constraints 

violated, and a softFitness for the number of soft constraints 

violated. These two values are added together to give the fitness 

function. The third important factor i s the stopping condition, 

which is (hardFitness == 0 && softFitness < max) where max is 

the maximum allowable value for the number of soft constraints 

to be violated. This value is chosen experimentally. Other 

important parameters should be chosen such as; the number of 

iterations, type of crossover and probability, mutation 

percentage, population size, number of best chromosomes per 

iteration to keep, and number of new off-springs generated per 

iteration. 

 

Figure 5: Genetic algorithm concept
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1. Insert random chromosomes into the population until 

it’s full. 

2. While the ending condition is not met, do 

a. Remove some of the chromosomes available. 

b. Select two chromosomes by random. 

c. Cross them over to get a new offspring. 

d. Mutate the new offspring. 

e. Repair the new offspring. 

f. Evaluate the fitness function of the new 

offspring and add it to the population. 

g. Go to “b” until the population is full. 

h. Check the resetting condition, if met; replace 

all non-best chromosomes in the population with 

new randomly generated ones. 
 

Figure 6: Genetic algorithm pseudo code 

 

 

Figure 7: Genetic algorithms chromosome structure 

3.3 Genetic Coloring 
In this section, we propose to utilize both GC and GA for 

solving both class and exam timetabling problems. Based on our 

experience in using GA and GC in timetabling, we could 

summarize some of the drawbacks in both algorithms as follow: 

1. GC uses a brute force algorithm to satisfy the soft constraints 

which is not good idea especially with large problem sizes. 

2. GC assigns the class/course to the first empty slot if all slots 

violate one or more of the soft constraints. 

3. In GA, the chromosome length increases with the increase of 

the problem size. For instance, in our case, the chromosome 

length could be 30*n (6 days * 5 slots), where n is the number 

of rooms. Assume n=100, therefore, the chromosome length 

will be 3000 genes which is very large. Certainly, this affects 

the chromosome processing and the overall GA running time. 

4. GA should wait till the hardFitness value converges to zero 

which might take long time. 

To solve these problems, we propose to use GC to satisfy the 

hard constraints and GA to satisfy the soft constraints.  We 

believe that such combination will enhance the efficiency of the 

timetabling solution(s) as well as to reduce the running time in 

most of the cases. Therefore, no brute force is required for the 

soft constraints satisfaction.  In addition genetic coloring assigns 

the class to the slot that minimizes the number of violated soft 

constraints. Moreover, the chromo- some length will be reduced 

to a constant value, (30 *6 days * 5 slots). Nevertheless, genetic 

coloring doesn’t even check the hardFitness value as it is surely 

ZERO. 

 

Figure 8: Genetic coloring phases 

Similarly, genetic coloring algorithm consists of three phases as 

shown in figure 8.  The problem is first reduced into a graph 

coloring problem and solve accordingly. This is similar to the 

first phase in graph coloring solution explained in section 3.1. 

The second phase is the room assignment which also similar to 

the second phase in graph coloring approach explained in 

section 3.1. The pseudo code for both phases is depicted in 

Figures 2 and 3 respectively.  Here, it comes the role of the GA 

to work on the soft constraints. The output of phase 2 is a set of 

colored groups. The target of the genetic algorithm is to find the 

best way to assign these colored groups to the timetable’s slots 

minimizing the number of soft constraints violated. The pseudo 

code for the phase 3, GA, is given in Figure 9.  In this phase, the 

same GA process, explained before, takes place. The process 

includes the crossover, mutation, the repair procedure, and the 

fitness function evaluation. However, the GA process this time 

differs from the one stated before because of the change in some 

settings. 
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Figure 9: Genetic coloring phase 3 

 

 

Figure 10: Genetic Coloring chromosome structure 

The new chromosome structure is reduced to the number of days 

multiplied by the number of slots per day as shown in Figure 10.  

The fitness function, since the genetic algorithm will be used to 

satisfy the soft constraints only, there’s no need to have a 

compound functions. Therefore the fitness function will be only 

the number of violated soft constraints. In addition, the stopping 

criterion is changed to be based only on the condition of 

softFitness < max, where max is the maximum allowable value 

for the number of soft constraints to be violated. This number 

we choose based on our simulation as we will show later in the 

simulation results. Other parameters stated previously in the GA 

section may have different value, depending on the used test 

cases. 

 

4. EXPERIMENTS 
In this section, we study the performance of hybrid of genetic 

and graph coloring algorithms compared to the GA and GC as 

standalone solutions to the timetabling problems. We 

implemented the three algorithms for this purpose and de- 

signed some of the test cases to measure their performances. All 

of the experiments done in this paper were implemented on Intel 

Quad Core 2.83GHz processor, with 12 MB cache, and 

Windows 7 32-bit having 4 GB of RAM. Our implementation 

utilized C# dot Net on dot Net framework 4 under Visual Studio 

2010. In addition, to have fair comparisons among the proposed 

algorithms, we tested the Genetic algorithm in many test cases 

and found , on average, the best results produced when 1) 

mutation percentage equal to 1% , 2) maximum number of 

iterations equal to 1000, and 3) number of chromosomes in the 

population is equal to 30. 

4.1 Test Case 1: Department Scope 
This test case considers small size problem which we call it 

“department scope”.  This scope considers only 250 students, 20 

professors, 70 courses, and 20 rooms.  In fact, this is the actual 

size of our computer department. In terms of average running 

time, Figure 11 shows that graph coloring algorithm is the least 

running time while genetic algorithm takes almost 46 seconds to 

reach a suitable solution which is the worst among the three 

algorithms.  At the same time, the genetic coloring time is not 

considered bad compared to the genetic algorithm but still worth 

than the graph coloring algorithm.  However, Figure 12 shows 

another point of view in terms of the algorithms performance. 

For instance, as can be seen, it does not mean that because of the 

graph coloring algorithm is taking the least time, it produces the 

best timetable in terms of performance. In fact, Genetic coloring 

approach gives the best performance while the graph coloring 

algorithm violates most of the soft constraints. In addition, 

Genetic Coloring is something in between in terms of 

performance of other algorithms while its running time is very 

small compared to the Genetic Algorithm running time. 
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Figure 11: Running time of the three algorithms in terms of 

department scope 

 

Figure 12: Fitness comparison of the three algorithms in 

terms of department scope 

4.2 Test Case 2: Faculty Scope 
Here, again, we test the performance of the three algorithms 

with medium size problems in which we call it “faculty scope”. 

The faculty scope used in this section are about 500 students, 40 

professors, 40 teaching assistance, 140 courses, and 40 rooms. 

In terms of running time, the results as shown in Figure 13 is 

similar to the department results where genetic algorithm is the 

most time consuming algorithm. Graph coloring still better than 

the Genetic coloring by almost half of the time. However, both 

graph coloring and genetic coloring are much better than the 

genetic algorithm by almost 14 times. On the other hand, in 

terms of the algorithms fitness, genetic coloring, as shown in 

Figure 14 is somehow between the genetic and graph coloring. 

Therefore, it is a tradeoff between the time and fitness. 

 

Figure 13: Running time of the three algorithms in terms of 

Faculty scope 

 

Figure 14: Fitness comparison of the three algorithms in 

terms of Faculty scope 

4.3 Test Case 3: University Scope 
Another test case is examined in this section for a university 

scope in which problems with 750 students, 60 professors, 60 

teaching assistance, 210 courses, and 60 rooms are inspected. In 

terms of running time, Figure 15, it seems that the running time 

is doubled compared to the faculty scope problems. For 

instance, the genetic algorithm takes almost 7 hours to produce a 

solution.   However, genetic algorithm still over fits both graph 

coloring and genetic coloring algorithms in terms of 

performance as shown in Figure 16. At the same time, genetic 

coloring is much better than graph coloring algorithm. 

 

Figure 15: Running time of the three algorithms in terms of 

University scope 

 

Figure 16: Fitness comparison of the three algorithms in 

terms of University scope 



IJCA Special Issue on “Artificial Intelligence Techniques - Novel Approaches & Practical Applications” 

AIT, 2011 

24 

5. CONCLUSION 
In this paper, we compared between different techniques for 

timetabling problem including the exam timetabling. We 

introduced three algorithms which are graph coloring, genetic 

algorithms, and genetic coloring as a hybrid algorithm. Graph 

Coloring and Genetic Algorithms are modified from previous 

algorithms while the Genetic Coloring algorithm is the one we 

proposed in this paper. After the implementation to the 

algorithms, we experimented with different test cases through 

different problem scopes, department, faculty, and university 

scopes.  Our results show that although our Genetic Coloring 

was not the best algorithm in terms in its fitness in most of the 

cases, however, it is better than the GA in terms of running time 

and better than Graph coloring in terms of fitness performance. 
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