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ABSTRACT 

The main objective of the Multi Job Shop Scheduling problem 

(MJSSP) is to find a schedule of operations that can minimize 

the final  completion time. In this paper, the various approaches 

with heuristics used to solve MJSSP are studied and its 

constraints clearly represented in mathematical model. MJSSP 

has been implemented with Steepest-Ascent Hill 

Climbing(SAHC) algorithm with constructive heuristics and 

compared against with the results of depth-first- Dynamic 

Consistency Enforcement(DCE) . Also SAHC’s efficiency is 

experimentally proved with  more optimal and consistent  results 

obtained  for various instances.   

General Terms 

Heuristics, Local Search, Combinatorial Problem. 

Keywords 

Constraints, heuristics,  multi job shop scheduling, mathematical 

model,  steepest ascent hill climbing, depth first. 

1. INTRODUCTION 
The goal of combinatorial optimization is finding the best 
possible solution from the set of feasible solutions. The Multi 

Job-Shop Scheduling Problem (MJSSP) is one of the most 
difficult problems, as it is classified as NP-Hard problem. This 

can be solved using either Artificial Intelligence or Operation 
Research. Scheduling deals with the timing and coordination of 

activities which are competing for common resources.  

MJSSP is one of the most eminent machine scheduling problems 
in manufacturing systems, operation management, and 

optimization technology. The goal of MJSSP is to allocate 
machines to complete jobs over time, subject to the constraint 

that each machine can handle at most one job at a time. The 
complexity of MJSSP increases with its number of constraints 

and size of search space. 

The problem formulated is extremely difficult to solve, as it 

comprises of several concurrent goals and several resources 
which must be allocated to lead to our goals, which are to 

maximize the utilization of machines and to minimize the time 
required to complete the entire process being scheduled 

(Mesghouni et al., 2004). 

Therefore, the exact methods such as the branch and bound 

method, dynamic programming and constraint logic 
programming need a lot of time to find an optimal solution. So, 

it is expected to find an optimal solution using a heuristic search 
method.  

Performance criteria such as machine utilization, each job’s 

execution speed, and total jobs completion time are all 

dependent on how efficiently the jobs are scheduled in the 

system. Hence, it becomes increasingly important to develop 

effective scheduling approaches that help in achieving the 
desired objectives. 

Scheduling is broadly defined as the process of assigning a set 

of tasks to resources over a period of time (Pinedo , 1995).  

The processing complexity increases as  moving from single 

stage shops to job shops. Various methods have been developed 

to solve the different types of scheduling problems in different 

shop configurations for the different objectives. These range 

from conventional methods such as mathematical programming 

and priority rules to meta-heuristic and artificial intelligence-

based methods (Holland, 1992). 

Most of the real world manufacturing companies aim at 

successfully meeting the customer needs while improving the 

performance efficiency(Tamilarasi et.al, 2010). Huiyuan et al. 

(2009) established a dual resource (machines and moulds) 

constrained JSSP model, and received outperformed results. 

Ping-Teng Chang,Yu-Ting Lo(2001) modeled the multiple 

objective functions containing  both multiple quantitative(time 

and production)and multiple qualitative objectives in their  

integrated approach to model the JSSP, along with a genetic 

algorithm/tabu search mixture solution approach. 

Hong Zhou.et.al(2009) proposed a hybrid framework integrating 

a heuristic and a genetic algorithm (GA)  for JSS to minimize 

weighted tardiness. In which, for each new generation of 

schedules, the GA determines the first operation of each 

machine, and the heuristic determines the assignment of the 

remaining operations. 

Li-Ning Xing et al.(2009) proposed a feasible and effective 

algorithm to move a step closer to the ultimate vision of an 

automated system for generating optimal or near-optimal 

production schedules. M.A. Adibi et al.(2010) developed 

dynamic job shop scheduling that consists of variable 

neighborhood search (VNS), a trained artificial neural network 

(ANN). ANN  updates parameters of VNS at any rescheduling. 

R.A.Mahdavinejad (2007) solved  MJSSP by a heuristic 

algorithm based on the hybrid method of priority dispatching 

rules according to an ant colony optimization algorithm. By 

using the suitable hybrid method of priority dispatching rules, 

the process of finding the best solution would be improved. 
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Nandhini.M, Kanmani.S(2010),identified the significance of 

local search  with  value adding heuristics  in  improving  

optimality over timetabling problem. 

A. Garrido et al.2000, proposed heuristic techniques for variable 

and value orderings to be included in two known  searching 

algorithms: Basic-Depth-First Backtrack and Depth-First-with- 

DCE(N.M. Sadeh et al.(1995 & 1996)). The former algorithm is 

the classical chronological backtracking procedure heuristically 

improved. The latter uses the additional heuristic Dynamic 

Consistency Enforcement (DCE), which dynamically focuses its 

effort on critical resource  sub problems and learns from its 

previous faults. 

In order to show the significance of heuristics in getting feasible 

solution and  the   attitude of local search in improving optimal 

solution of MJSSP, SAHC with constructive heuristic  is 

proposed and implemented on MJSSP. Also, its performance is 

compared with the results of Depth-First with-Dynamic 

Consistency Enforcement(DCE). 

This paper is organized as follows. In Section.2, problem 

description of job-shop scheduling and mathematical 

representation of its constraints  are  mentioned.  The proposed 

method and its implementation with heuristics are presented in 

Section 3. Empirically evaluated experimental results on a set of 

typical instances are shown with variable sizes of data sets in 

Section 4.  Conclusions and final remarks are discussed in 

Section 5.  

2. MULTI   JOB - SHOP SCHEDULING 

PROBLEM  
The JSSP consists of n jobs and m machines. Each job must go 

through m machines to complete its work. It is considered that 
one job consists of m operations. Each operation uses one of m 

machines to complete one job’s work for a fixed time interval. 
Once one operation is processed on a given machine, it cannot 

be interrupted before it finishes the job’s work. In general, one 
job being processed on one machine is considered as one 

operation noted as Oji (means j th job being processed on i th 
machine, 1 ≤ j ≤ n,1 ≤ i ≤ m) (Garey et al. 1976 and Lawler et al. 

1993). Each machine can process only one operation during the 

time interval. 

The objective of JSSP is to find an appropriate operation 

permutation for all jobs that can minimize the makespan Cmax 
i.e., the maximum completion time of the final operation in the 

schedule of n×m operations with minimum waiting time of jobs 
and machines. 

The problem can be made to understand with its known 
constraints (mandatory &optional) / assumptions as listed below. 

The mathematical modeling of those constraints is also 
designed.  

C1: No machine may process more than one      job at a time. 
C2: No job may be processed by more than  one machine at a 

time. 
C3: The order in which a job visits different machines is 

predetermined by technological constraints. 
C4: Different jobs can run on different machines 

simultaneously. 
C5: At the  moment T, any two operations of the same job 

cannot  be processed at the same time. 

A1:  Processing time on each machine is      known. 

S1:  Idle time of machines may be reduced 

S2:  Waiting time of jobs may be reduced. 
 

Mathematical Modeling of Constraints: 

 
Entities used in mathematical representation of constraints are 
given below. 

J (j1, j2, j3)   :Jobs 
M (m1, m2, m3) :Machines 

O (01, 02, 03) :Sequence of operations for a job 
TS  :Processing time of  an operation 

Cmax  :Makespan  
M[j][ts]->m :Machine name with job j at time ts 

J[m][ts]-> j  :Job name on machine m at time ts  
Mac[j][o][ts]->m :Machine name with operation o of job j at 

  time ts 

 

Capacity Constraints 
C1: No machine may process more than one job at a time. 
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 C2: No job may be processed by more than one machine at a 
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C3:The order in which a job visits different machines is 
predetermined by technological constraints. 
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C4: Different jobs can run on different machines 

simultaneously. 
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Precedence Constraints 

C5: At the  moment T, any two operations of the same job 
cannot  be processed at the same time. 

m2[ts]Mac[j][o2]  then   m1][j][o1][ts Mac
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Soft Constraints 
S1. Idle time of machines may be reduced. 

}{)(, tMinmidleTimeMm  

 

S2. Waiting time of jobs may be reduced. 
 

}{)(, tMinjwaitTimeJj  

3. HEURISTICS  LOCAL  SEARCH  
With the elements described in the problem description and by 

satisfying precedence and capacity constraints , a schedule with 

minimum fitness value in the states space is to be found. 
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We propose constructive heuristically improved Steepest- 

Ascent Hill climbing algorithm to find the optimal solution. 

3.1 State Representation 
State formation takes number of jobs, number of operations for 

each job, sequence of operation of each jobs, processing time of 
each job’s operation and allotment of operation over machines 

as inputs.  

In our work, each state  is represented as an array of structures. 

Each structures  consists  of job name and its operation as 
members.  

 
 

 
 

 
Where, 

 Job No.  i:   1..n 
Operation No. j :  1..m   such that  1<2<3<….<.m 

3.2 Feasible Solution generation 
A feasible schedule is generated by the proposed Constructive 

Heuristics shown in figure 1. First operation in a schedule can be 

scheduled if it is been first operation of any of the jobs. This is 

done by  Verifying Initial Allotment module. Following this , 

unscheduled operation of all the jobs are scheduled by verifying 

operation consistencies and capacity  constraints.  

3.3 Objective function 
The main objective of the MJSSP is to find a schedule of 

operations that can minimize the final completion time (called 

makespan), that is the completed time of carrying total 

operations out in the schedule for n jobs and m machines. 

 
Fig.1:  Feasible Solution with Constructive Heuristic 

The objective or fitness function takes input as the number of 

jobs, number of operations/machines, operation time sequence 

and machine sequence of the corresponding operation.  Also, a 

multi-objective performance measure is included in the 

objective function that consists of makespan and tardiness of  

job and machine. 

Objective 

 function Min Z   =   Min (Makespan+  
         Jobs Waiting Time+--------------------- eq.(1) 

       Machines Waiting Time) 
Where, 

 Job No.  I : 1..n 
Operation No. j : 1..m;    1<2<3<….<.m 

3.4 Methods for Controlling the Execution 
Searching for optimal combination could be controlled by the 
following strategies.  

 Reaches the optimum: This option is enabled if a combination 

satisfying all hard and at the most soft constraints have been 
obtained and saves the result of combination and quit from the 

execution. 

 Backtracking: This option is enabled when a combination 

having the best evaluation value is not reached in the 

successive levels. By enabling this, either another initial 
combination or next best adjacent combination in the current 

level will be taken up for further iterations. 

 Breadth Wise Search : When two successive combinations of 

same fitness value are found in two successive levels of a 

current state, to continue the neighborhood search, the 
adjacent combination (breadth wise) of current state is taken 

up for further processing. 

3.5 Steepest Ascent – Hill Climbing 

This process starts with initial schedule attained with heuristics. 

Its neighborhood feasible schedules establish state space which 

are formed by altering the allotment of jobs and its operations in 

a schedule, called as generation. Each schedule fitness is 

evaluated as eq.(1). Searching for optimal solution is done by 

the  following algorithm and is shown in figure 2. 

 

Algorithm : Steepest Ascent Hill Climbing 

 
1.Evaluate the initial state. 

2.Loop until a solution is found or a complete iteration produces 

no change to current state: 
- SUCC = a state such that any possible successor of the current 

state will be better than SUCC (the worst state).  
- For each operator that applies to the current state, evaluate the 

new state: 

    if goal  quit 

    if better than SUCC  set SUCC to    this state 

    if SUCC is better than the current state  set the current state 
to SUCC.  
 
 

 
 
 
 
 
 
 
 
 

 
Fig.2:  Steepest Ascent Hill Climbing Procedure 
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3.6 Depth First with DCE 
A. Garrido.et.al(2000) used the additional heuristic Dynamic 

Consistency Enforcement (DCE), which dynamically focuses its 

effort on critical resource sub problems and learns from its 

previous faults along with chronological backtracking. In this 

method, Consistency according to the precedence constraints 

and  Consistency according to constraints about resource 

capacities are considered in the scheduling process.  

4. EMPIRICAL EVALUATION 
In this section, we study the empirical evaluation of the 

developed heuristic method. The empirical method performance 

is compared with the algorithms Depth- First-with-DCE and 

SAHC. Both algorithms use the same variable/value ordering 

heuristics and the same techniques of consistency enforcing. 

 Depth-First-with-DCE. This algorithm uses chronological 

backtracking and DCE heuristic. 

 Steepest Ascent Hill Climbing. This  algorithm  uses the 

efficiency of a chronological backtracking and taking the best 

while moving along the search space. 

4.1 Design of data set 

Six instances of job-shop scheduling problems have been 

designed with small, medium and large sizes of   number of 

jobs, operations and resources given in Table 1. 

Table.1:  Data set design 

 

4.2 Algorithm Comparison 
The algorithms have been implemented using Java (Jdk 1.6). 

These algorithms are tested with a standard MJSSP requirements 

specified in Section 2. The parameters used in implementation 

are generation from 0 to 50, various types of problems instances 

set of machines , jobs and its operations. The value of  

makespan,  waiting time of job, waiting time of machine ,fitness  

in different generations from 0 to 50 for various types of 

problems instances are found and tabulated in Table 3&4. 

In depth first with DCE, since a depth-bound was set in the 

solution search, when it reaches 50th level, the search process 

stops.  As the chronological backtracking method is not enough 

to solve complex job-shop problems, depth first with DCE gives 

better results because of its consistency checking of precedence 

and resource constraints. In spite of the low rate of reduction in 

finding the solutions, the efficiency of SAHC  is appropriate 

enough  and exposed through difference of fitness given in 

Table 2. This difference  is due to the fact that  taking the best in 

each iteration along with consistent checking.  

Table .2:  Fitness Difference 

 

4.3 Results and Discussions 
 From the fitness difference comparison  chart in  figure 3 , it is 

understood that improvement in  fitness exists on generation 

grows in both the algorithms. But the difference(ie. Fitness of 

depth first with DCE - Fitness of SAHC) in each generation 

reveals that in majority of data sets, SAHC with heuristics is 

outperforming the other one. 

4.3.1 Sample Schedule 
 Operation Sequence  

               

 

 

 

 

 

 

  

Processing Time for each operation 

 

 

 

 

 

 

 

     Optimal Sequence of Scheduling: 

 

 
 

Fitness Value of Optimal Solution: 

 

Fitness value    =70 

Makespan    =29 

Jobs Waiting Time   =19 

Machines Waiting Time   =22 

4.4 Gantt Chart Inference 
Maximum time taken to complete all  jobs operations is 29 units. 

In order to reduce time, parallel accessing of operations of 

different jobs on different machines are made possible. In Gantt 

chart, figure 4, each job’s execution is shown with one color and 

processing time is given within it. Each machine waiting time is 

the sum of time gap between any two operations allocated on it. 

Each job’s waiting time is the sum of time gap between 

consecutive operations of that job. 

 

Type Jobs Operations Machines 

SD1 Type 1 5 5 5 

SD2 Type 2 5 6 6 

MD1 Type 3 7 6 6 

MD2 Type 4 7 7 7 

LD1 Type 5 10 6 6 

LD2 Type 6 10 10 10 

  

5
th

 generation 
10

th
 

generation 
50

th
 generation 

Fitness Fitness Fitness 

Type1 48 23 10 

Type 2 29 28 28 

Type 3 185 99 3 

Type 4 52 47 20 

Type 5 452 126 150 

Type 6 374 251 230 

 M

1 

M

2 

M

3 

M

4 

J1 1 2 3 4 

J2 4 1 2 3 

J3 3 4 1 2 

J4 2 3 4 1 

 O1 O2 O3 O4 

J1 1 2 3 4 

J2 5 6 7 8 

J3 7 6 5 1 

J4 8 2 4 3 
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Table :3:   Fitness : Steepest Ascent Hill Climbing 

 

 

 

 

 

 

 

 

 

Table .4 :   Fitness : Depth First with DCE 

 

 

 

 

 

 

 

Fig. 3:  SAHC & DFS-DCE Fitness Difference Comparison 

 

Fig.4: Gantt Chart 

5. CONCLUSION 
A static multi constrained combinatorial problem of multi Job 

shop scheduling is implemented using local search algorithms; 

steepest ascent hill climbing and depth first search-DCE with 

heuristics. Significance of heuristics in finding feasible could be 

identified.  SAHC with heuristics proved to be the one to give 

near optimal solutions  by comparing with depth first - DCE. In 

future, this local search could be combined with evolutionary 

algorithms 
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