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ABSTRACT 
A common task in bioinformatics is the comparison of 

biological sequences to probabilistic models in order to evaluate 

their similarity. Completion of genomes of most of the 

organisms lead to profitable comparative analyses, providing 

insights into non-coding regions as well as into protein coding 

regions of DNA. In the present work we propose a method for 

finding similar sequence in a database of upstream sequences of 

DNA. For testing purpose, we have extracted upstream 

sequences of different mammals of citrate synthase and actin 

genes and also that of cab gene in different plants. The promoter 

sequences are extracted from NCBI database. Motifs/ TFBS of 

the upstream sequences are extracted using the software tool ‘TF 

search’. Then probabilistic models are obtained for motif 

sequences by HMM method. Query motif sequence can be 

compared with all the motif sequences in the data base and 

based on maximum likelihood procedure, degree of similarity 

between query and all the motif sequences is obtained.  

General Terms 
Pattern matching, information retrieval 

Keywords 

Database, Hidden Markov Model, Promoter sequence, pattern 

matching, Transcription factors (TFs), Transcription factor 
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1. INTRODUCTION 
Describing and modeling biological features of eukaryotic 

promoters remains an important and challenging problem in 

computational biology. 

DNA is the molecule in which life organisms store information 

for their biological processes. The analysis of DNA sequences 

involves identifying the various patterns and understanding their 

functional roles. The order of occurrence of four alphabets in a 

DNA sequence is not completely random (else the percentage of 

occurrence of each alphabet would be 0.25). Different regions of 

the genome exhibit different patterns of these alphabets, A, T, G, 

C, e.g., protein coding regions, regulatory regions, which govern 

the production of proteins and enzymes, regulatory regions, 

repeat regions, intron/exon boundaries, etc.  
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A gene consists of a sequence of nucleotides from which RNAs 

(Ribo Nucleic Acid) can be transcribed to give either non coding 

regulatory RNAs or mRNAs or rRNAs. The information stored 

in the mRNA is used in the biosynthesis of proteins. The 

temporal, spatial and quantitative expression of RNA from 

genes is decided by the sequence existing before the sequence of 

a gene. This region is the promoter region. Transcription factors 

are those that bind to specific sequences in the promoter called 

transcription factor binding sites (TFBS) and regulate expression 

of the gene.  

 

However, TFBSs associated to the same TF are known to 

tolerate sequence substitutions without losing functionality, and 

are often not conserved. Consequently, promoter regions of 

genes with similar expression patterns may not show sequence 

similarity, even though they may be regulated by similar 

configurations of TFs. Despite the recent progress due to the 

development of techniques based on so-called phylogenetic 

footprinting [Wasserman W. W. et. al., 2004, Meera A. et.al., 

2009], lack of nucleotide sequence conservation between 

functionally related promoter regions may partially explain the 

still limited success of currently available computational 

methods for promoter characterization [Ficket J. W. et.al., 1997] 

and [Tompa  M. et.al., 2005]. 

In recent years, the number of sequences and therefore, the size 

of databases available for comparison have grown exponentially. 

This growth has prompted scientists to develop faster and more 

sophisticated algorithms to keep pace with the increasing size of 

the databases. Software improvements combined with state-of-

the-art hardware have allowed computational biologists to enter 

a new era of comparative genomics [S.F. Altschul et.al., 1990], 

[S. Altschul et.al., 1997], [W.R. Pearson et.al., 1988]. One 

example of this new growth may be seen in the use of 

probabilistic methods in bioinformatics, in particular, in the 

database searches. Although hidden Markov models (HMMs) 

were initially introduced for pattern recognition in digitized 

acoustics of the human voice [L.R. Rabiner et.al, 1989], they 

have become popular in bioinformatics. Current efforts in this 

area (including software) have been reviewed by [S.R. Eddy 

et.al, 1998]. HMMs in bioinformatics have been used in 

multiple-sequence alignments [Krogh et al, 1994]. They are also 

used in sequence analysis to produce an HMM that represents a 

sequence profile to study sequence composition and patterns 

[Durbin R. et al., 1999], to locate genes, and to predict protein 

structures. Searching a database against a given query is a 

fundamental process in bioinformatics. 
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In this paper, we employ Hidden Markov Model 

(HMM), an important tool in statistical modeling that has 

enjoyed great success in speech recognition. The basic theory 

behind HMMs was described by Baum and colleagues in a 

series of classic papers [Baum L.E. et al., 1970 ][Baum L.E. and 

J. Eagon, 1967] and was implemented by Baker [J.Baker et al., 

1975] in the 1970s for speech processing. In recent years, 

HMMs have found wide application in computational biology.   

2. METHODOLOGY 
The promoter sequences of genes are extracted from 

NCBI database and subjected to TF search using ‘TF search’ 

tool. Thus the promoter sequences are converted into motif 

sequences. 

 

2.1  Steps for HMM Modeling 
Step1: Motif sequences are converted into numerical sequences. 

We have assumed N=Number of states in the model=5 

Step2: Training the motif sequence:  

Initial estimate for λ = (��� ��� ��) are assumed.  
A=aij is state transition matrix 

B is output/ Observation / emission matrix. 

Π is initial state distribution matrix. 

Initially, we assume 

� � �	
 �
��
��
��� ��� ��� ��� ������ ��� ��� ��� ������ ��� ��� ��� ������ ��� ��� ��� ������ ��� ��� ��� �����

��
�
   {NXN  ie. 5X5} 

 

             π �
��
��
�������

��
�
   {NX1 ie. 5X1} 

   

B=�
���� � ������ � ������ � ������ � �����    NXM  ie. 5X210} 
Where M=210(for example), is the number of observables 

(motifs) in the given motif sequence. 

 

Step 3:  Using Equation  !!!!!!!!!!!!!!!!!!!!!"��	� � #$	�	�����!!!!!� % 
 % &#.          (1) 
 the initial value of forward variable α1, is calculated 

        α 1(i) = (1)(5/210)=5/210 

Then we obtain forward variable αt(i), (probability of partial 

observation of sequence) using Equation 

"� ' ��
� � #�
�(� ' ��) "��	�*	
�+,-. !!!!!!!!!!!!!!!!!!!���!!!!!!� % 
 % & # .                                     
 

Step 4 : The backward variable βt (i) (the probability of being in 

state Si, given the partial observation ot+1,…,oT) is calculated 

using equation 

/��	� � #) β� ' ��0�*	
�
�(� ' ���+1-. !!!!!!!!!!!!!!!!!!!!!�2�!!!!!� % 	 % & #.                                      
! 
 !� � 3 4 �5 �& 

e.g. β1 (1 )=  a1,1  *  b1(O2)  * β2(1)       
[ at i=1,j=1,t=1 ] = (0.2)(5/210)(1)=1.0/210 

 

Step 5: Using an initial parameter instantiation λ=(A,B,π), the  

Baum-welch algorithm  or Expectation Maximization[ (EM 

method)  re-estimates three parameters πi, ai,j and bi(ot) where      

πi = initial state distribution 

                   ai,j =Transition probabilities  

                   bi(ot)=Emission probabilities  

Here we re-estimate1) Transition Probabilities: 

),( jitξ   is the probability of being in state si at time t and 

going to state sj, given the current model and parameters 
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2) Emission  probabilities  bi(k) =    UVWUXHUY!Z[\]U^!_`!H,\Ua!,Z!a
�b!cZY!_]aU^dUY!ae\]_f!dg

UVWUXHUY!Z[\]U^!_`!H,\Ua!_`!H,\Ua!,Z!aHcHU!a,  

^ 

bj(k)=) h���� ij�HH-. !k��	��) k��	�lH-.  bi(k)          (6) 
 

Where h���� ij� � �!	E�� � ij!!��m<Dn	F<!�
      

 

 

and!k��	� (state probability),  the probability of being 
in state si, given the complete observation o1………oT. 

3) Initial distribution probability $o � k��	� 
 

The Updated Model is 

 

λ' = (�p,qr ,!$o) by the following update rules: 
                �o	
 � !!!!) sH�,�1�QLRSOR) PH�,�QLRSOR    

�ri(k)=) h���� ij�HH-. !k��	��) k��	�lH-.   

 $o � k��	� Where k��	� � ) 6�!�	� 
�+1-.  .                                                 

 For each values of updated model λ, P(O/ λ) is calculated and 

above step is repeated until P(O/ λ) reaches local maxima. 

 

Step 6:  Testing the motif sequence (query sequence):  Using 

Viterbi algorithm, we find P(O/λ) for optimal sequence.  

1. Initialization 
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2. Induction h��
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                   P* = t*uvwVw+xh� 4 ��	��	
y�!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!�! % !
! % !&!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 

The probability value is generated for all models. 

 

     Fast Viterbi algorithm or Altenate Viterbi algorithm uses log 

probabilities rather than normal probabilities. This is done to 

replace the multiplication with addition and also to increase 

numeric fidelity as multiplications of the probabilities (which 

are less than 1) would demand high precision maintenance. The 

obtained probability P(O/λ) is logarithmic probability value. 

2.2 Need for Threshold calculation for preventing 
false acceptance 
In order to reject the sequences which do not have significant 

similarity with any of the sequences in the database, the 

following steps are used. 

 Let M be the number of such sequences to be trained to develop 

M statistical models given by λ1, λ2,……λM for the sequences 
S1,S2,…SM. 

Let M be 5. 

In the probability matrix given below, 

 

 

D= 

 

 

In any row, the diagonal element of the matrix is said to be 

having maximum value. 

For example among the third row elements,  

  

the third element being one of the diagonal elements of the 

entire matrix, is maximum among all the elements in the row. 

But this may not be true for the elements present in the third 

column of the matrix D.ie., in the elements mentioned, 

 
If an unknown test sequence which is not one among the trained 

sequences is used in the testing procedure, say S15. 

Then in testing procedure, by using Viterbi algorithm for every 

combination of the test sequence and statistical model, the 

following sequence of probabilities is evaluated. 

 

 

Assuming ( )315 λSp  is maximum among all the probabilities 

given above, the S15 will be misjudged as S3 due to the 

maximum likelihood principle. 

So there is need for fixing threshold for each statistical model λ. 

Then ( )315 λSp  is to be compared with the threshold T3. The 

threshold for the model λ3 must be calculated in such way that 
the expression ( )315 λSp  < T3 must be true. 

2.3  Threshold Calculation for each statistical model 
λ 
Let every sequence ‘Si’ has certain number of variants of it 

given by Si1, Si2, Si3, Si4, Si5 and Si6. 

For example for the sequence S1, the variants are given by S11, 

S12, S13, S14, S15 and S16. 

The probability matrix D for every set of variants for sequences 

S1 to S5 is evaluated. 

The probability matrices are given by D1, D2, D3, D4, D5 and 

D6.The in-phase probabilities for each model λi are given by, 

( ) ( ) ( ) ( ) ( ) ( )iSiPi
SiPi

SiPi
SiPi

SiPi
SiP λλλλλλ

6,5,4,3,2,1  

The out-phase probabilities for every λi are given by,  
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SjPi
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SjPi
SjPi

SjP λλλλλλ
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With  
61 ≤≤ j
 

 
The mean of the �n-phase components for the model λ� �s 

evaluated and termed as µ�n-�. 

The mean of the out-phase components for the model λ� �s 

evaluated and termed as µout-�. 

The standard dev�at�on of the �n-phase components for the 

model λ� �s evaluated and termed as σ�n-�. 

The standard dev�at�on of the out-phase components for the 

model λ� �s evaluated and termed as σout-�. 

The threshold T� for the stat�st�cal model λ�, �s calculated by 

iiniout

iinioutioutiin
iT

−−

−−−−

+
+

=
σσ

σµσµ ..
 

Thus calculated Ti s will be more or less around the diagonal 

element ( )iSiP λ
.Hence during the testing of a query sequence 

S15, there is a chance that ( )iSP λ
15  be more than the ( )iSiP λ  

and hence more than the threshold value Ti. 

To prevent this, an array of variance sequence is calculated 

during the threshold calculation itself. 

For every sequence Si with its variant sequence set say Si1, Si2, 

Si3, Si4, Si5 and Si6, the variance Vi is calculated by finding the 

sum of the square of distances between the corresponding 

threshold Ti and the probability value, 

( ) 61       where, ≤≤ ki
SP ik
λ  

( )( )

Mi

SpTiV
k

iiki

≤≤

−= ∑
=

1

6

1
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5444342414
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514131211 1

λλλλλ
λλλλλ
λλλλλ
λλλλλ
λλλλλ

SpSpSpSpSp
SpSpSpSpSp
SpSpSpSpSp
SpSpSpSpSp
SpSpSpSpSp

( ) ( ) ( ) ( ) ( )5343332313 λSp,λSp,λSp,λSp,λSp

( ) ( ) ( ) ( ) ( )3534333231 λSp,λSp,λSp,λSp,λSp

( ) ( ) ( ) ( ) ( )515415315215115 ,,,, λλλλλ SpSpSpSpSp
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while testing the query sequence say S15, which is not used 

during the training stage, The probability sequence containing 

probabilities ( ) ( )
5

15    
1

15
λλ

SptoSp  are evaluated. 

With maximum likelihood principle, the maximum value among 

these probabilities is determined. 

Assuming ( )  
3

15

λ
Sp to be maximum among all the other values, 

the square of the difference between this probability and the 

corresponding threshold value T3 is determined. 

(T3- ( )  
3

15

λ
Sp )2 is compared with the variance V3 available in 

the variance sequence set V. 

S15 being ‘foreign’ sequence, the value determined from the 

expression ( T3- ( )  
3

15

λ
Sp )2 will be greater than V3. 

Thus S15 is considered as sequence which cannot be classified to 

be among the trained sequences. 

 

 

3. RESULT  
The promoter sequences of genes coding for citrate synthase and 

actin gene of different mammals and promoters of different 

plants of cab gene  are retrieved from NCBI database and 

subjected to  TF search using ‘TF search’ tool. Thus the primary 

promoter sequences are converted to motif sequences. 

         The query promoter sequence which is in the form of motif 

sequence is compared with all the sequences in the database and 

the log probability score with each sequence is displayed. The 

sequence in the database which has highest similarity with the 

query sequence is highlighted (in blue and underlined). Here, a 

section of the result has been shown.  

 

 pathway- CMP(citrate synthase) and Organism - BOS-5:     -

2571.002094 

 pathway- CMP(citrate synthase) and Organism - BOS-10:  -

2604.309499 

 pathway-CMP(citrate synthase) and Organism - Can-10: -

3319.908145 

 pathway- CMP(citrate synthase) and Organism - HS-19: -

1365.157139  

 pathway -CMP(citrate synthase) and Organism - HS-12: -

4079.434347 

 pathway- CMP(citrate synthase) and Organism - HS-2:        -

2743.449172 

 pathway- CMP(citrate synthase) and Organism - HS-3:        -

2527.987613 

 

The result reveals that the query motif sequence has highest 

similarity with Homosapien chromosome 19 of citrate synthase 

gene in Central Metabolic Pathway. 

 

 

 

4. DISCUSSION AND CONCLUSION 
The program has been tested for a number of query sequences 

and it is found that it is working efficiently. False acceptance 

rate of sequences which do not have significant similarity with 

any of the sequences in the database is zero. 

 

Hidden Markov Modeling (HMM), is an important tool in 

statistical modeling that has enjoyed great success in 

Bioinformatics. HMMs have been used in classification 

[Georgina Mirceva and Danco Davcev, 2009, Denis F Wolf, et. 
al, 2005].  
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