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ABSTRACT 
The quality of electric power has been a constant topic of study, 
mainly because inherent problems to it can lead to great 
economic losses, especially in industrial processes. Among the 
various factors that affect power quality, those related to 
transients originating from capacitor bank (CB) switching in the 
primary distribution systems must be highlighted. This paper 
 presents an Artificial Neural Network (ANN)-based approach to 
 estimate the transient overvoltages due to capacitor  energization. 
In proposed methodology, Levenberg-Marquardt  second order 
method is used to train the multilayer perceptron. ANN training 
is based on equivalent parameters of the network. Therefore, 
trained ANN is applicable to every studied system. The 
 developed ANN is trained with the extensive simulated results, 
and  tested for typical cases. Then the new algorithms are 
presented and demonstrated for a partial of 39-bus New England 
test system. The simulated results  show that the proposed 
technique can estimate the peak values of switching 
overvoltages with good accuracy.   

Keywords 
Artificial neural networks; capacitor banks switching; switching 
overvoltages.  

1. INTRODUCTION 
Electric power systems have predominantly inductive loads, 

so that the systems themselves must supply the reactive power 
consumed. The most practical and efficient way for the utility to 
supply the reactive power demanded is through the installation 
of capacitor bank (CBs) in the system. The installation of shunt 
CB brings benefits concerning the reduction of system charging 
and electrical losses, system capacity release, and also 
improvements in the power factor [1, 2]. 

Although various factors influence power quality, the work 
presented here focuses on transients originating from shunt 
capacitor bank switching in power systems. 

The magnitude and shape of the switching overvoltages vary 
with the system parameters and network configuration. Even 
with the same system parameters and network configuration, the 
switching overvoltages are highly dependent on the 
characteristics of the circuit breaker operation and the point-on-
wave where the switching operation takes place [3]. 

In this paper power system blockset (PSB), a 
MATLAB/Simulink-based simulation tool [4] is used for 
computation of both switching and temporary overvoltages. This 
paper presents the artificial neural network (ANN) application 
for estimation of overvoltage peaks under switching transients 
during capacitor energization. A tool such as proposed in this 

paper that can give the maximum switching overvoltage will be 
helpful to the operator. It can be used as training tool for the 
operators. The proposed ANN is expected to learn many 
scenarios of operation. To give the maximum peak overvoltages 
in a shortest computational time which is the requirement during 
online operation of power systems. 

 In the proposed ANN we have considered the most important 
aspects, which influence the transient overvoltages such as 
voltage at capacitor bus before switching, equivalent resistance, 
equivalent inductance, equivalent capacitance, line length, 
switching angle, and capacitor capacity. This information will 
help the operator to select the proper condition of capacitor 
switching with transients appearing safe within the limits. 
Results of the studies are presented for a partial of 39-bus New 
England test system to illustrate the proposed approach. 

2. MODELLING ISSUES 

2.1 PSB 
Simulations presented in this paper are performed using the 
PSB. The simulation tool has been developed using state 
variable approach and runs in the MATLAB/Simulink 
environment. This program has been compared with other 
popular simulation packages (EMTP and Pspice) in [4]. The user 
friendly graphical interfaces of PSB enable faster development 
for power system transient analysis. 

2.2 Generator model 
In [5] generators have been modeled by generalized Park’s 

model that both electrical and mechanical part are thoroughly 
modeled, but it has been shown that a simple static generator 
model containing an ideal voltage source behind the sub-
transient inductance in series with the armature winding 
resistance can be as accurate as the Park model. Thus in this 
work, generators are represented by the static generator model. 
Phases of voltage sources are determined by the load flow 
results.  

2.3 Transmission line model 
Transmission lines are described by the distributed line 

model. This model is accurate enough for frequency dependent 
parameters, because the positive sequence resistance and 
inductance are fairly constant up to approximately 1 KHz [6] 
which cover the frequency range of harmonic overvoltages 
phenomena.  

2.4 Load and Shunt Devices Model 
All of the loads and shunt devices, such as capacitors and 

reactors, are modeled as constant impedances. 
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3. TRANSIENT OVERVOLTAGES 
DURING CAPACITOR ENERGIZATION 
One of the major concerns in power system restoration is the 

occurrence of overvoltages as a result of switching procedures. 
These can be classified as transient overvoltages, sustained 
overvoltages, harmonic resonance overvoltages, and 
overvoltages resulting from ferro-resonance. Steady-state 
overvoltages occur at the receiving end of lightly loaded 
transmission lines as a consequence of line-charging currents 
(reactive power balance). Excessive sustained overvoltages may 
lead to damage of transformers and other power system 
equipment. Transient overvoltages are a consequence of 
switching operations on long transmission lines, or the switching 
of capacitive devices, and may result in arrester failures. Ferro-
resonance is a nonharmonic resonance characterized by 
overvoltages whose waveforms are highly distorted and can 
cause catastrophic equipment damages [7-10]. 

This paper concentrates on the estimation of switching 
overvoltages during capacitor energization. The CB switching 
provokes transient overvoltages that theoretically can reach peak 
phase-to-earth values in the order of 2-3 p.u. 

The sample system considered for explanation of the 
proposed methodology is a 400 kV EHV network shown in Fig. 
1. The normal peak value of any phase voltage is 400√2/√3 kV 
and this value is taken as base for voltage p.u. In the system 
studies 400 kV line-to-line base voltage and 100 MVA as a base 
power is considered. Fig. 2 shows the switching transient at bus 
2 when capacitor is energized. 

In practical system a number of factors affect the 
overvoltages factors due to energization or reclosing. In this 
paper following parameters is considered: 

• Voltage at capacitor bus before switching 

• Equivalent resistance of the network 

• Equivalent inductance of the network 

 

 

 
 
Fig 1: Sample system for capacitor energization study. G: 

generator, Reqv: equivalent resistance, Leqv: equivalent 

inductance, and Ceqv: equivalent capacitance. 
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Fig 2: Voltage at bus 2 after switching of capacitor. 

 

• Equivalent capacitance of the network 

• Line length 

• Closing time of the circuit breaker poles 

• Capacitor bank capacity 
 

In proposed method, equivalent parameters of the network as 
well as other parameters are used as ANN inputs. Thus, ANN is 
trained just once for simple system of Fig. 1 and developed 
ANN is applicable to every studied system. For using developed 
ANN, just studied system must convert to Fig. 1. Section 5 has 
more details about proposed method. 

Source voltage affects the overvoltage strongly. Fig. 3 shows 
the effect of source voltage on overvoltage at different 
equivalent resistance. Fig. 4 shows the effect of line length on 
overvoltages at different source voltage. Controlled switching of 
high-voltage ac circuit breakers has become a commonly 
accepted means of controlling switching transients in power 
systems [11]. Fig. 5 shows effect of switching angle on 
overvoltages at different equivalent capacitance. Fig. 6 shows 
the effect of shunt capacitor capacity on overvoltages at 
different equivalent inductance. 

As discussed above for an existing system the main factors 
which affect the peak values of switching overvoltage are 
capacitor bus voltage, equivalent resistance, equivalent 
inductance, equivalent capacitance, line length, switching angle, 
and capacitor capacity. Here it should be mentioned that a single 
parameter often cannot be regarded independently from the 
other important influencing factors. The magnitude of the 
overvoltages normally does not depend directly on any single 
isolated parameter and a variation of one parameter can often 
alter the influence of another parameter, in other words there 
exists an interaction between the various system and breaker 
parameters. This forbids the derivation of precise generalized 
rule of simple formulae applicable to all cases [12]. So an ANN 
can help to estimate the peak values of switching overvoltages 
generated during reactor energization. An ANN is programmed 
by presenting it with training set of input/output patterns from 
which it then learns the relationship between the inputs and  
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Fig 3: Overvoltage peak at bus 2 as source voltage while 

equivalent inductance 0.025 p.u., equivalent capacitor 1.2825 

p.u., line length 200 km, switching angle 20°, and shunt 

capacitor capacity 30 MVAR. Reqv is equivalent resistance. 
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Fig 4: Overvoltage peak at bus 2 as line length while 

equivalent resistance 0.004 p.u., equivalent inductance 0.025 

p.u., equivalent capacitance 1.2825 p.u., switching angle 20°, 

and capacitor capacity 30 MVAR. S.V. is source voltage. 

 

 outputs. In next section an ANN-based approach is described 
which can give a acceptable solution of switching transients by 
the help of which an operator can take a quick decision at the 
time of operation. 

4. THE ARTIFICIAL NEURAL 

NETWORK  
The proposal in this work considers the adoption of feed 

forward Multilayer Perceptron (MLP) architecture. A MLP 
trained with the back-propagation algorithm may be viewed as a 
practical vehicle for performing a nonlinear input–output 
mapping of a general nature [3, 13]. Function approximation by 
feed forward MLP network is proven to be very efficient, 
considering various learning strategies like simple back 
propagation or the robust Levenberg–Marquardt. Its ability to 
perform well is affected by the chosen training data as well as 
training scheme. The schematic diagram of the proposed MLP 
neural networks architecture is shown in Fig. 7. The  
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Fig 5: Overvoltage peak at bus 2 as switching angle while 

source voltage 0.9 p.u., equivalent resistance 0.003 p.u., 

equivalent inductance 0.03 p.u., line length 150 km, and 

capacitor capacity 20 MVAR. Ceqv is equivalent 

capacitance. 
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Fig 6: Overvoltage peak at bus 2 as shunt capacitor capacity 

while source voltage 0.9 p.u., equivalent resistance 0.003 p.u., 

equivalent capacitance 1.8912 p.u., line length 150 km, and 

switching angle 30°. Leqv is equivalent inductance. 

 

 composition of the input variables for the proposed neural 
networks has been carefully selected. 

Supervised training of ANN is a usual training paradigm for 
MLP architecture. Fig. 8 shows the supervised learning of ANN 
for which input is given to PSB to get the peak values of 
transient overvoltages and the same data is used to train the 
ANN. Error is calculated by the difference of PSB output and 
ANN output. This error is used to adjust the weight of 
connection. Since the switching transient demands a solution 
with high precision, the neural network has to be trained 
considering a very small stopping criterion. Output values of the 
trained neural networks must be capable of computing the 
voltages with very good precision. Gradient-based training 
algorithms, like back propagation, are most commonly used for 
training procedures. They are not efficient due to the fact that 
the gradient vanishes at the solution. Hessian-based algorithms 
allow the network to learn more subtle features of a complicated 
mapping. The training process converges quickly as the solution
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Fig 7: Proposed MLP-based ANN architecture. 

 

 

 
Fig 8: Supervised learning of ANN. 

 

is approached, because the Hessian does not vanish at the 
solution. To benefit from the advantages of Hessian based 
training, we focused on the Levenberg–Marquardt (LM) 
algorithm reported in [14]. 

4.1 Levenberg-Marquardt (LM) Algorithm 
Suppose that we have a function )(xξ  which we want to 

minimize with respect to the parameter vector x, where 

∑
=

=

N

i

ie

1

2 )()( xxξ                                (1) 

where )(xei  is the error for ith input. Then the Marquardt–

Levenberg modification to the Gauss–Newton method is 

[ ] )()()()(∆ T1T xexJIxJxJx
−

+= µ          

  (2) 

where )(xJ  is the jacobian matrix. The parameter µ is 
multiplied by some factor β whenever a step would result in an 

increased )(xξ . When a step reduces )(xξ , µ is divided by β. 
Notice that when µ is large the algorithm becomes steepest 
descent; while for small µ the algorithm becomes Gauss–
Newton. The LM algorithm is very efficient when training 
networks have up to few hundred weights. Although the 
computational requirements are much higher for the each 
iteration of the LM algorithm, this is more than made up for by 
the increased efficiency. This is especially true when high 
precision is required. 

4.2 Training Artificial Neural Network 
All experiments have been repeated for different system 

parameters. After learning, all parameters of the trained 
networks have been frozen and then used in the retrieval mode 
for testing the capabilities of the system on the data not used in 
learning. The testing data samples have been generated through 
the PSB program by placing the parameter values not used in 
learning, by applying different parameters. A large number of 
testing data have been used to check the proposed solution in the 
most objective way at practically all possible parameters 
variation. Percentage error is calculated as: 

100
PSB

PSBANN
error(%) ×

−
=                     (3) 

Neural network is trained with the goal of mean square error 
(MSE) 1e-3. Fig. 9 shows the training of neural network. Results 
for a sample test data are presented in Table 1 and Figs. 10-11. 
Table 1 contains the some sample result of test data. Values in 
column VPSB are the absolute values of peak voltage at bus 2 
calculated by PSB program in p.u. where the VANN values are 
the values simulated by trained network. Also, Fig.10 shows 
overvoltage peak at bus 2 against the line length and Fig.11 
shows overvoltage peak at bus 2 against the shunt capacitor 
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capacity. 

 

Table 1. Some sample testing data and output 

V [p.u.] Reqv [p.u.] Leqv [p.u.] Ceqv [p.u.] L.L. [km] S.A. [deg.] C [MVAR] VPSB [p.u.] VANN [p.u.] errorV [%] 

0.778 0.0055 0.025 1.2825 125 20 30 1.2589 1.2397 1.5261 

0.947 0.0065 0.025 1.2825 325 20 30 2.2192 2.2029 0.7326 

1.006 0.0035 0.025 1.2825 325 20 30 2.3791 2.3354 1.8367 

0.856 0.0045 0.025 1.2825 175 20 30 1.5191 1.5741 3.6205 

0.997 0.0065 0.025 1.2825 275 20 30 2.0904 2.0643 1.2495 

0.999 0.0035 0.025 1.2825 275 20 30 2.1173 2.1496 1.5236 

0.997 0.0055 0.025 1.2825 225 20 30 1.9829 2.0247 2.1058 

0.921 0.0035 0.025 1.2825 125 20 30 1.4702 1.4895 1.3146 

0.884 0.003 0.0225 0.3694 150 15 40 1.8591 1.8521 0.3763 

0.887 0.003 0.0225 2.1956 150 15 5 1.0916 1.0813 0.9475 

0.892 0.003 0.0275 1.5869 150 65 5 1.2704 1.3046 2.6918 

0.892 0.003 0.0275 1.5869 150 85 35 2.0641 2.0921 1.3582 

0.901 0.003 0.0325 2.8044 150 45 15 1.3656 1.3176 3.5174 

0.895 0.003 0.0325 0.9781 150 5 25 1.3541 1.3312 1.6892 

0.902 0.003 0.0375 1.5869 150 75 5 1.1871 1.1973 0.8557 

0.905 0.003 0.0375 2.8044 150 55 40 2.2417 2.2062 1.5834 

V = capacitor bus voltage before switching, Reqv = equivalent resistance, Leqv = equivalent inductance, Ceqv = equivalent capacitance, L.L. = 
line length, S.A. = switching angle, C = shunt capacitor capacity, and errorV = voltage error. 
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Fig 9: Squared error against epoch curve. 
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Fig 10: Overvoltage peak vs. line length at bus 2 simulated 

by ANN and PSB while source voltage 0.9 p.u., equivalent 

resistance 0.0055 p.u., equivalent inductance 0.025 p.u., 

equivalent capacitance 1.1285 p.u., switching angle 20°, and 

capacitor capacity 15 MVAR. 
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Fig 11: Overvoltage peak vs. shunt capacitor capacity at bus 

2 simulated by ANN and PSB while source voltage 0.925 

p.u., equivalent resistance 0.003 p.u., equivalent inductance 

0.0225 p.u., equivalent capacitance 2.1956 p.u., line length 

150 km, and switching angle 45°. 

 

In the next section, the proposed model tested with portion of 
39-bus New England test system. Various cases of capacitor 
energization are taken into account and corresponding peak 
values estimated from trained model. 

5. CASE STUDY 
In this section, the proposed algorithm is demonstrated for 

two case studies that are a portion of 39-bus New England test 
system, of which its parameters are listed in [15]. The 
simulations are undertaken on a single phase representation. 
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In the proposed method, first, studied system must convert to 
equivalent circuit of Fig. 1, i.e., values of equivalent resistance, 

equivalent inductance, and equivalent capacitance are

 

Table 2. Case 1 some sample testing data and output 

V [p.u.] S.A. [deg.] C [MVAR] VPSB [p.u.] VANN [p.u.] errorV [%] 

0.768 10 17 1.0841 1.0945 0.9562 

0.768 50 17 1.2172 1.2248 0.6249 

0.831 50 17 1.2915 1.2581 2.5863 

0.831 50 35 1.6316 1.6083 1.4275 

0.895 45 15 1.2709 1.2478 1.8184 

0.895 90 33 1.8497 1.7651 4.5736 

0.937 30 12 1.2802 1.3024 1.7351 

0.937 75 24 1.5398 1.5801 2.6159 

V = capacitor bus voltage before switching, S.A. = switching angle, C = shunt capacitor capacity, and errorV = voltage error. 

 

 
 
 

Fig 12: Studied system for case 1. 

 

calculated. These values are used in trained artificial neural 
network to estimate overvoltages peak. 

5.1 Case 1 
Fig. 12 shows a one-line diagram of a portion of 39-bus New 

England test system. First, equivalent circuit of this system, seen 
behind bus 16, is determined and values of equivalent resistance, 
equivalent inductance, and equivalent capacitance are 
calculated. In other words, this system is converted to equivalent 
system of Fig. 1. In this case, equivalent parameters are 0.00385 
p.u., 0.03129 p.u., and 2.0674 p.u., respectively. For testing 
trained ANN, values of voltage at capacitor bus (bus 19)  before 
switching, switching angle, and capacitor capacity are varied 
and in each case, overvoltage peak values are calculated from 
trained ANN and system of Fig. 12. Table 2 contains the some 
sample result of test data for case 1. 

5.2 Case 2 
As another example, the system in Fig. 13 is examined. After 

converting this system to equivalent circuit of Fig. 1 and 
calculating equivalent circuit parameters seen from bus 5, 
various cases of capacitor energization are taken into account 

and corresponding peak overvoltages are computed from PSB 
program and trained ANN. In this case, values of equivalent 
resistance, equivalent inductance, and equivalent capacitance are 
0.00731 p.u., 0.02513 p.u., and 1.5724 p.u., respectively. 
Summery of few result are presented in Table 3. It can be seen 
from the results that the ANN is able to learn the pattern and 
give results to acceptable accuracy. 

6.  CONCLUSION 
In this paper a ANN approach has been suggested to estimate 

the peak overvoltages due to capacitor  energization. The 
Levenberg–Marquardt second order training method has been 
adopted for obtaining small mean square error (MSE) without 
losing generalization capability of ANN. The results from this 
scheme are close to results from the conventional method and 
helpful in predicting the overvoltage of the other case studies 
within the range of training set. The proposed ANN approach is 
tested on a partial 39-bus New England test system. 

 

 

 
Fig. 13: Studied system for case 2. 

 

 

Table 3. Case 2 some sample testing data and output 

V [p.u.] S.A. [deg.] C [MVAR] VPSB [p.u.] VANN [p.u.] errorV [%] 

0.754 70 20 1.3325 1.3584 1.9426 

0.754 70 42 2.0094 1.9796 1.4835 

0.822 15 42 1.7158 1.7785 3.6539 

0.822 55 33 1.5418 1.5084 2.1657 

0.879 90 21 1.5788 1.5921 0.8401 

0.879 90 14 1.1526 1.1323 1.7592 

0.925 30 12 1.2697 1.3103 3.1964 

0.925 60 40 1.9712 1.9391 1.6285 

V = capacitor bus voltage before switching, S.A. = switching angle, C = shunt capacitor capacity, and errorV = voltage error. 
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