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ABSTRACT 

Analytical models have been developed to diminish test 

procedures for product realization, but they have only been 

partially successful in consistently predicting the performance of 

battery systems. The complex set of interacting physical and 

chemical processes within battery systems have made the 

development of analytical models to be a significant challenge. 

Advanced simulation tools are needed to become more 

accurately model battery systems which will reduce the time and 

cost required for product realization. As an alternative approach, 

we have begun development of cell performance modeling using 

non-phenomenological models for battery systems based on 

Neural network which uses Matlab 7.6.0(R2008b). A Neural 

network based learning system method has been proposed for 

estimation of residual capacity of lead acid battery. RBF and 

regression network based technique are used for learning battery 

performance variation with time, temperature and load. Thus a 

precision model of Neural network has been evaluated. The 

correlation coefficient of this model is worth 0.99977 shows 

good results for the target and network output.   

Keywords 
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1. INTRODUCTION 
The need to develop electric vehicles arises not only due to the 

high price of international petroleum but also for solving the 

worsening environment problems. Energy management is the 

major key technology of battery powered vehicle [1]. The 

increase of energy density and efficiency, and accurate 

measurement of the capacity are important research topics [2], 

[3]. Although many new electrochemical systems were studied 

for this application, the lead acid battery is still a leading 

candidate [4]. Measurement of the capacity of lead acid battery 

in battery powered vehicle was studied by electrochemical 

reaction [5]. The estimation of capacity of lead acid battery is a 

key point of energy management system in electric vehicle [6].  

Many methods are used to improve the precision of battery 

capacity. Generally, the methods for measuring the capacity of 

the lead acid battery are: impedance method, conductance 

method or resistance method [7], [8].  

The parametric fitting model method may not be accurate 

enough for the measurement of the capacity of the lead acid 

battery in the electric vehicle because the internal resistance of 

the battery is not constant [9]. These methods are only used for 

the batteries of the same model to be evaluated. This approach 

does not work anymore if the battery has some differences. The 

Coulometric method can measure the charge or discharge 

current of battery to solve the above disadvantages [10]. The 

Coulometric measurement method usually uses several 

correction factors added to minimize the errors and used 

together to determine the capacity.  

The Ampere hours algorithm commonly estimate the battery 

capacity. The battery capacity is calculated by multiplying the 

current by time of discharge [11], [12]. Open circuit Voltage 

method is widely used in capacity estimation of the battery. The 

terminal Voltage of the battery is relevant to the capacity when 

the battery is under no load [13]. However, in the battery 

condition charge or discharge state is not open circuit, the 

capacity is inaccurate. Open circuit Voltage method and Ampere 

hours algorithm together to achieve the capacity for electric 

vehicle [14]. The open circuit method, loaded voltage method 

and the Coulometric measurement method can be combined 

together to measure the capacity of the battery in the battery 

powered vehicles [15].  

Although the Coulometric method is convenient to use, it still 

has disadvantages. The measurement of the battery is based on  

the actual current and rated capacity while battery capacity 

depends on discharge current. The battery aging effect will also 

reduce the capacity, when it is not corrected, an error may occur. 

Modified Coulometric measurement method uses the 

Coulometric measurement method as the basis and consideres 

the current additive effect and the battery aging factor [16].  

Neural network establishes a relationship between input and 

output data, which uses voltage, current, temperature as its input 

and the capacity as output. In order to train this artificial neural 

network based model, the data were collected after a series of 

the designed experiments carried out using the battery evalu-

ation and testing system with the wide range of discharge 

current and temperature [17]-[19]. The virtue of the method is 

that it can be applied to the battery systems. In this paper, a new 

method for estimation of residual capacity of lead acid battery 

which uses Neural network is proposed and its based technique 

is also used for learning battery performance variation with time, 

temperature and load.  

2. MATERIAL AND METHODS 

2.1 Material 
The material used in this work was a Lead acid battery type 

46B24L produced by PT. GS Battery Indonesia.  
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2.2 Instruments 
Mathematical Laboratory (Matlab) version R2008b (developed 

by MathWorks, Natick, Massachusetts) was employed to 

perform the simulation procedures and development of 

mathematical computing. All computational simulations were 

performed on a Window machine with Intel Dual Core 2GHz as 

the processors and 1 GB of RAM.  

2.3 Overview of Radial Basis Function 
The radial basis function requires more neurons than the 

feedforward network. This network will work better when it is 

given lots of input data. Radial basis function multiplies the 

distance between weight vector and input vector with weight 

bias. Radial basis function has a maximum value of 1 if the 

inputs receive zero. When the distance between weights vector 

and input vector decreases, the output of this function becomes 

larger. The RBF architecture used as a model of lead acid 

battery is shown in Figure 1. The activation function used in this 

network: 

 
2
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Radial Basis function is used to approximate the real value 

function {f(x): x∈Rd} of d variable by {S(x): x∈Rd} with 

scattered data position. If xj a set of point in Rd and f(x) is a 

function (f(x): Rd � R) such that {f(xj): j = 1,2,..n} and 

 jj exf =)(                                                            (2) 

then there is a interpolating function S such as 

 )()( jj xfxS =                                                    (3) 

Now S has a form 
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Whereas S is a linear combination of translates of a function φ. 
Function φ is called Radial Basis Function (RBF), which is a 

continuous spline depending upon the distances of data centers x 

(x ∈ Rd). As they are spherically symmetric about the centers, 

they are called radial. The norm is usually Euclidean. φ is a 
fixed function R+ to R. λj is radial basis function coefficient. λj 
can be calculated with help of xj and f(xj), as follows 

 kk exf =)(                                                            (6) 
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In matrix form (6) can be written as 

 EA =λ                                                                  (8) 

Where λ, E are 

 [ ]Tj ......4321 λλλλλλ =  (9)

 [ ]TkeeeeeE ......4321=                                (10) 

Where Ajk is an element of A matrix 

 )( jkjk xxA −= φ                                          (11)                                         

Radial basis function coefficients λj can be calculated by solving 

equation (8). It may be noted that the matrix A must be non 

singular to solve (8) for calculation of λj. 

 

 

 

 

 

 

 

 

 

Fig. 1. RBF architecture used to model of lead acid battery 

(number of input variable 3, amount of data 26, single 

target) 

2.4 Proposed Method 
Coulometric method is one of the methods to measure capacity 

of Lead Acid Battery, in which the capacity is estimated by 

subtracting charge flow out of battery from the initial existing 

charge as described by (12). 

 flowgeCharSCapacity initial −=           (12) 

Sinitial is a state of charge of battery (i.e. Before discharge takes 

place when battery is in a full charge Sinitial=100).The capacity of 

battery is also a function of battery temperature. In this paper, a 

learning system has been proposed by using Radial Basis 

Function Interpolation method for learning battery 

characteristics with coulometric method. Therefore, it can be 

written as 
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Equation (13) is written in integral form, Nd is a normalizing 

factor, so that capacity can be expressed in percentage form. 

Functional form of ε is not available in general but there is a 

need of correcting ε with the variation of battery performance 

for error free estimation. These two objectives are met by using 

Radial Basis Function. Its function is used to map E from 

discharge and temperature data. When battery performance is 

altered due to aging and other factors, the E automatically adapts 

itself and minimizes the errors in estimation of capacity. Radial 

Basis Function system must learn the initial nature of E from 

battery manufacturer data or by experiment at different 

temperature and discharge rate or through some empirical 

formula given to corresponding battery manufacturer. Therefore, 

the system is initialized by the knowledge of characteristics of a 

battery from a specific manufacturer and type.   

The stages of algorithm to determine is the output capacity of 

the battery are as follows: 

1. To determine the distance data-i with data-j, Dij: 
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2. To determine the activation distance data by radial functions 

multiplied by the bias: 
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3. To determine the weight of bias and weight of bias layer, w2k 

and b2k, by solving linear equations with a least square 

method.  

4. To determine the network output a2ki, for each k = 1,2,..., s 

and i = 1,2,..., q, by the following: 

kkRRkikiki bwawawaa 221...21212 22211 ++++=  

2.5 Learning 
Learning vector set consists of current temperature and 

corresponding value of E.  Current i and temperature T are the 

input variables to the RBF system and denoted through vector xk 

(k=1, n) where xk = (i, T)T. RBF coefficients λ is calculated from 

learning vector set through (17). Equation (17) is generated from 

(8).  

 EA 1−=λ                                                            (17) 

A matrix is calculated by (11). E is a column vector whose 

element ek is the value of E for the vector xk. Initial learning 

process is accomplished by battery information available from 

the data provided by manufacturer or through experiment. An 

incorrect prediction of capacity after a fill charge-discharge 

cycle calls for the modification of RBF system in order that the 

prediction will be correct in the next cycle. Therefore, 

modification of Radial Basis Function parameters λ are 

required. The Radial Basis Function parameter λ are 

recalculated with the current rate, temperature and error 

information.  

In the previous paragraph the algorithm is described to find a 

new E when the discharge rate and temperature are limited to a 

single partition for most of time. In case, they are not limited to 

a single partition because it is difficult to evaluate the error in E. 

Hence, the problem is solved for two variables with a single 

equation, described by the (18). Here ∆Q, is the error in 

estimation of  capacity. 

∫ ∆++∆+=∆+ dtEEiEEiQQ ))()(( 2211        (18) 

If there is no error in E the equations will be a like (19) 

 dtEiEiQ ∫ += )( 21                                         (19) 

This procedure can be extended for 'n' different discharge rate 

and temperature. Expressed in matrix form 

 EiQ ∆=∆                                                           (20) 

Equation (20) is solvable provided matrix i is not a singular. 

3. RESULT AND DISCUSSION 
Radial Basis Function coefficient initialize of battery discharge 

rate and temperature is required with error term ∆E. E is 

depended on the magnitude of discharge rate and temperature 

during discharge process and most likely E at this discharge rate 

and temperature has error. Input space partitioned in to n 

number of division for each variables is shown in Figure 2. The 

number of partitions may not be the same width for all input 

variables in general. Discharge current and temperature 

collected through each samplings is inspected for which 

partition it belongs. After completion of full discharge, an 

average is calculated for each partitions. Partition average of the 

maximum fired partition in temperature and discharge current 

may be taken as discharge current and temperature information 

for Radial Basis Function coefficient calculation. 
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Fig. 2. Input variable I and T partition. 

First Radial Basis Function system is initialized with current 

temperature and E data form (17). 
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Equation (21) is least square fitted with the experimental data of 

a 36Ah 12 V battery. ir is reference current, E (ir, 298K) equal to 

one, k and a are two parameters, k can be determined by least 

square fitting from second source information. Preliminary data 

until twenty-second data is used as a learning process. Initial E 

plot with current and temperature is shown in Figure 3. A 

number of experiments are carried out for validation of proposed 

method. In each experiment initial learning is given the 

perturbation to test the effectiveness of algorithm. First 

experiment has been done with 36 Ah 12V battery with load 5 

ohm at room temperature. Before starting each experiments, the 

battery is in full Charge State. The twenty-third until the twenty 

sixth data is used as checking data. The plot after four data 

checks learning cycles is shown Figure 4. In this learning 

process, local correction is done for discharge rate only, and 

global correction for temperature. (i.e. correction is made for all 

temperature data) with the assumption that the temperature 

performance of battery altered very slowly in time while the 

discharge rate performance is most responsible for the error. 

 

 

Fig. 3. Initial interpolated by RBF. 

 

Fig. 4. The checking data interpolated by RBF. 

While the training process with the regression neural network on 

the same data can be seen in Figure 5. From the graph shows 

that output and the target is almost the same. Likewise, the same 

test data appear similar, can be seen in Figure 6. Regression 

neural network model approach is used to perform this function. 

Hidden layer contains neurons equal to the number of input 

vectors. The output hidden layer with RBF activation results 

from the distance between input vector and weight of the input 

multiplied by the weight bias. This model was established using 

regression network spread value = 0.25. 

 

Fig. 5. Output regression networks with spread = 0.25. 

 

Fig. 6. The checking data interpolated by regression network. 

The network output and target for the data were analyzed with 

linear regression. The linear regression for the target and 
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network output  in this model is shown in Figure 7. The equation 

for best fit in this model is: 

 

 0051.01 += TY  

where Y: output network, T:target. 

The correlation coefficient of this model is worth 0.99977 (close 

to 1) shows good results for the target and network output. 

The network output and target for the data checking were 

analyzed with linear regression too. The linear regression for the 

target and network output  in this model by using data checking 

is shown in Figure 8. The equation for best fit in this model is: 

 0029.01 += TY  

where Y: output network, T:target. 

The correlation coefficient at this model by using the data 

checking is worth 1 shows good results for the target and 

network output. 

 

Figure 7. The linear regression for the target and network output. 

 

Figure 8. The linear regression for the target and network output 

by using the data checking. 

There are two classes of uncertainty of  issues that affect the 

specification and the use of RBF. First, because the RBF is a 

non-phenomenological model of system behavior, the map that 

is learned by an RBF cannot precisely replicate the map that of 

the source of its input/output exemplars. That is, the RBF is an 

uncertain representation of the source map. The training 

techniques used to identify the parameters of RBF are designed 

to minimize the error with its origin. In practice, there is always 

a fact that the input/output exemplars presented to an RBF 

during training, contains measurement noise. This precludes of 

the possibility exactly represent system behavior. This problem 

is mitigated by the fact that training procedures for RBF 

typically yield models that average through the measurement of 

noise yielding an average model of system input/ouput behavior. 

Second,  there is uncertainty issue regarding the use of RBF. 

Under certain circumstances, the inputs to an RBF may be 

random variables or random processes. In this case, the inputs 

map to random output as they would with any deterministic 

map. The RBF can be used in the same way that a 

phenomenological model is used to establish the probability 

distribution of one or more random output given information on 

random inputs. In fact, because of its relative accuracy and 

computational efficiency, RBF are sometimes used as substitutes 

for phenomenological models where numerous model runs are 

required. 

4. CONCLUSION 
A new approach has been described to estimate the residual 

capacity of Lead Acid battery using neural network based RBF 

and regression network method. The proposed method considers 

battery non-linearity due to discharge rate, with temperature and 

corrects itself for aging and other variations of the battery 

characteristics to estimate capacity. Experimental results suggest 

that proposed method gives excellent prediction of residual 

capacity assuming that the initial charging state of battery is 

known and is able to learn performance variation. The proposed 

algorithm can further be extended to include factors such as 

incomplete charging and interrupted discharging. 

Current efforts involve to complete a similar experiment with 

variable temperature under constant load conditions. When this 

information is available, both simulations the temperature and 

load are arbitrarily changed, can be performed. With additional 

experimental pulse data being generated, RBF architecture and 

regression network can be optimized to further increase the 

accuracy of the battery simulations. This will involve RBF and 

regression network training using experimental battery data 

where temperature and load are varied simultaneously. It is not 

clear that any simple rules or combination of rules will suffice to 

generate and accurate neural network simulations of real battery 

behavior. Additional tools like genetic algorithm and/or genetic 

programming may be used to establish more accurate transition 

rules. These initial efforts on battery modeling have proven 

to be very effective, and even more complex simulations of 

battery behavior that will be performed. With the advanced 

study of neural network modeling and further development of 

the parametric model, additional simulations can be performed 

using the hybrid model to help efficiently to design and optimize 

robust battery systems.  
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