
IJCA Special Issue on “Artificial Intelligence Techniques - Novel Approaches & Practical Applications”

AIT, 2011

38

Mining Frequent Itemsets from Large Data Sets using
Genetic Algorithms

R. Vijaya Prakash
Dept. of Informatics
Kakatiya University,

Warangal, India

Dr. Govardhan
Dept. of Computer Science &

Engineering
JNTU, Jagityal, India

Dr. S.S.V.N. Sarma
Dept. of Computer Science &

Engineering
Vaagdevi Engineering

College, Warangal, India

ABSTRACT

Association Rules are the most important tool to discover the

relationships among the attributes in a database. The existing

Association Rule mining algorithms are applied on binary

attributes or discrete attributes, in case of discrete attributes there

is a loss of information and these algorithms take too much

computer time to compute all the frequent itemsets. By using

Genetic Algorithm (GA) we can improve the generation of

Frequent Itemset for numeric attributes. The major advantage of

using GA in the discovery of frequent itemsets is that they

perform global search and its time complexity is less compared to

other algorithms as the genetic algorithm is based on the greedy

approach. The main aim of this paper is to find all the frequent

itemsets from given data sets using genetic algorithm.

General Terms

Genetic Algorithm (GA), Association Rule, Frequent itemset,

Support, Confidence, Data Mining.

Keywords

Genetic Algorithm (GA), Association Rule Mining(ARM),

Frequent itemset, Data Mining(DM).

1. INTRODUCTION
Large amounts of data have been collected routinely in the course

of day-to-day management in business, administration, banking,

the delivery of social and health services, environmental

protection, security and in politics. Such data is primarily used for

accounting and for management of the customer base. Typically,

management data sets are very large and constantly growing and

contain a large number of complex features. While these data sets

reflect properties of the managed subjects and relations, and are

thus potentially of some use to their owner, they often have

relatively low information density. One requires robust, simple

and computationally efficient tools to extract information from

such data sets. The development and understanding of such tools

is the core business of data mining. These tools are based on ideas

from computer science, mathematics and statistics. Mining useful

information and helpful knowledge from these large databases has

thus evolved into an important research area [1][2].

Data mining has attracted a great deal of attention in the

information industry and in society as a whole in recent years, due

to the wide availability of huge amounts of data and the imminent

need for turning such data into useful information and knowledge.

The information and knowledge gained can be used for

applications ranging from market analysis, fraud detection, and

customer retention, to production control and science exploration.

Frequent pattern mining is an important area of Data mining

research. The frequent patterns are patterns (such as itemsets,

subsequences, or substructures) that appear in a data set

frequently. For example, a set of items, such as milk and bread

that appear frequently together in a transaction data set is a

frequent itemset. A subsequence, such as buying first a PC, then a

digital camera, and then a memory card, if it occurs frequently in

a shopping history database, is a frequent sequential pattern. A

substructure can refer to different structural forms, such as

subgraphs, subtrees, or sublattices, which may be combined with

itemsets or subsequences. If a substructure occurs frequently, it is

called a frequent structured pattern. Finding such frequent

patterns plays an essential role in mining associations,

correlations, and many other interesting relationships among data.

Moreover, it helps in data classification, clustering, and other data

mining tasks as well.

The process of discovering interesting and unexpected rules from

large data sets is known as association rule mining. This refers to

a very general model that allows relationships to be found

between items of a database. An association rule is an implication

or if-then-rule which is supported by data. The association rules

problem was first formulated in [3][4] and was called the market-

basket problem. The initial problem was the following: given a set

of items and a large collection of sales records, which consist in a

transaction date and the items bought in the transaction, the task is

to find relationships between the items contained in the different

transactions. A typical association rule resulting from such a study

could be “90 percent of all customers who buy bread and butter

also buy milk" – which reveals a very important information.

Therefore this analysis can provide new insights into customer

behaviour and can lead to higher profits through better customer

relations, customer retention and better product placements.

Mining of association rules is a field of data mining that has

received a lot of attention in recent years. The main association

rule mining algorithm, Apriori, not only influenced the association

rule mining community, but it affected other data mining fields as

well. Apriori and all its variants like Partition, Pincer-Search,

Incremental, Border algorithm etc. take too much computer time

to compute all the frequent itemsets. The papers [10][11][12][13]

contributed a lot in the field of Association Rule Mining (ARM).

In this paper, an attempt has been made to compute frequent

itemsets by applying genetic algorithm so that the computational

complexity can be improved.

2. ASSOCIATION RULE MINING (ARM)
Association Rule Mining aims to extract interesting correlations,

frequent patterns, associations or casual structures among sets of

items in the transaction databases or other data repositories

IJCA Special Issue on “Artificial Intelligence Techniques - Novel Approaches & Practical Applications”

AIT, 2011

39

[8][14]15][16]. The major aim of ARM is to find the set of all

subsets of items or attributes that frequently occur in many

database records or transactions, and additionally, to extract rules

on how a subset of items influences the presence of another

subset. ARM algorithms discover high-level prediction rules in

the form: IF the conditions of the values of the predicting

attributes are true, THEN predict values for some goal attributes.

In general, the association rule is an expression of the form

X=>Y, where X is antecedent and Y is consequent. Association

rule shows how many times Y has occurred if X has already

occurred depending on the support and confidence value.

Support: It is the probability of item or itemsets in the given

transactional data base: support(X) = n(X) / n where n is the total

number of transactions in the database and n(X) is the number of

transactions that contains the item set X.

Therefore, support (XY) = support(XUY).

Frequent itemset: Let A be a set of items, T be the transaction

database and minsup be the user specified minimum support. An

itemset X in A (i.e., X is a subset of A) is said to be a frequent

itemset in T with respect to minsup if support(X)T > minsup

The problem of mining association rules can be decomposed into

two sub-problems:

 Find all itemsset whose support is greater than the user-

specified minimum support, minsup. Such itemsets are called

frequent itemsets.

 Use the frequent itemsets to generate the desired rules. The

general idea is that if, say ABCD and AB are frequent itemsets,

then we can determine if the rule AB=>CD holds by checking

the following inequality

support({A,B,C,D}) / support({A,B}) > minconf, where the

rule holds with confidence minconf.

To demonstrate the use of the support-confidence framework, we

illustrate the process of mining association rules by the following

example.

Example 1. Assume that we have a transaction database in a

supermarket, as shown in Table 1. There are six transactions in the

database with their transaction identifiers (TIDs) ranging from

100 to 600. The universal itemset I ={A, B, C, D, E}, where A, B,

C, D and E can be any items in the supermarket. For instance, A =

„„bread”, B = „„milk”, C = „„sugar”, D = „„coffee”, and E =

„„biscuit”.

Table 1. An example transaction database

TID Items bought

100 ABCD

200 BCE

300 ABCE

400 BE

500 ACD

600 BCE

There are totally 25(=32) itemsets. {A}, {B}, {C}, {D}, and {E}

are all 1-itemsets, {AC} is a 2-itemset, and so on. Supp(BC) =

4/6 = 0.67 because there are four transactions that contain both A

and B. Let minsupp = 50% and minconf = 80%. Then, A, B, C, E,

AC, BC, BE and BCE are all frequent itemsets. The confidence of

association rule A=>C is conf(A=>C) = supp(AC) / supp(A) = 3/3

= 1.0. Hence rule A => C is valid. Similarly we have conf (C

=>A) = 3/5 = 0.6. Hence, rule C => A is not valid.

3. GENETIC ALGORITHM
Genetic Algorithms (GAs) are adaptive heuristic search algorithm

premised on the evolutionary ideas of natural selection and

genetic. The basic concept of GAs is designed to simulate

processes in natural system necessary for evolution, specifically

those that follow the principles first laid down by Charles Darwin

of survival of the fittest. As such they represent an intelligent

exploitation of a random search within a defined search space to

solve a problem.

GAs are one of the best ways to solve a problem for which little is

known. They are a very general algorithm and so will work well

in any search space. The Genetic Algorithm [5] was developed by

John Holland in 1970. GA is stochastic search algorithm modeled

on the process of natural selection, which underlines biological

evolution [6].

GA has been successfully applied in many research, optimization

and machine learning problems. GA works in an iteretative

manner by generating new populations of strings from old ones.

Every string is the encoded binary, real etc. version of a candidate

solution. An evaluation function associates a fitness measure to

every string indicating its fitness for the problem [7].

Standard GA apply genetic operators such selection, crossover

and mutation on an initially random population in order to

compute a whole generation of new strings. GA runs to generate

solutions for successive generations. The probability of an

individual reproducing is proportional to the goodness of the

solution it represents. Hence the quality of the solutions in

successive generations improves. The process is terminated when

an acceptable or optimum solution is found. GA is appropriate for

problems which require optimization, with respect to some

computable criterion. The functions of genetic operators are as

follows:

1) Selection: Selection deals with the probabilistic survival of the

fittest, in that, more fit chromosomes are chosen to survive. Where

fitness is a comparable measure of how well a chromosome solves

the problem at hand.

2) Crossover: This operation is performed by selecting a random

gene along the length of the chromosomes and swapping all the

genes after that point.

3) Mutation: Alters the new solutions so as to add stochasticity in

the search for better solutions. This is the chance that a bit within

a chromosome will be flipped (0 becomes 1, 1 becomes 0).

Genetic algorithms are a method of "breeding" computer

programs and solutions to optimization or search problems by

means of simulated evolution. Processes loosely based on natural

selection, crossover, and mutation are repeatedly applied to a

population of binary strings which represent potential solutions.

Over time, the number of above-average individuals increases and

highly-fit building blocks are combined from several fit

individuals to find good solutions to the problem at hand.

Not only does GAs provide alternative methods to solving

problem, it consistently outperforms other traditional methods in

most of the problems link. Many of the real world problems

involved finding optimal parameters, which might prove difficult

for traditional methods but ideal for GAs.

IJCA Special Issue on “Artificial Intelligence Techniques - Novel Approaches & Practical Applications”

AIT, 2011

40

This generational process is repeated until a termination condition

has been reached. Common terminating conditions are:

 A solution is found that satisfies minimum criteria

 Fixed number of generations reached
 Allocated budget (computation time/money) reached

 The highest ranking solution's fitness is reaching or has

reached a plateau such that successive iterations no longer

produce better results

 Manual inspection

 Combinations of the above

4 PRACTICAL IMPLEMENTATION

4.1 GAR Algorithm
The GAR (Genetic Association Rules) algorithm is based in the

theory of evolutionary Algorithms, it is necessary to prepare the

data to indicate to the tool which attributes form part of the

antecedent and which one is the consequent.

 algorithm GAR

 Begin

 1. nItemset = 0

 2. while (nItemset < N) do

 3. nGen = 0

 4. generate first population P(nGen)

 5. while (nGen < NGENERATIONS) do

 6. process P(nGen)

 7. P(nGen+1) = select individuals of P(nGen)

 8. complete P(nGen+1) by crossover

 9. make mutations in P(nGen+1)

 10. nGen++

 11. end_while

 12. I[nItemset] = choose the best of P(nGen)

 13. penalize records covered by I[nItemset]

 14. nItemset++

 15. end_while

 end
 Fig.1. GAR Algorithm

In Figure 1 the structure of the algorithm is shown. The process is

repeated until we obtain the desired number of frequent itemsets

N. The first step consists in generating the initial population. The

evolutionary algorithm takes charge of calculating the fitness of

each individual and carries out the processes of selection,

crossover and mutation to complete the following generation. At

the end of the process, in step 12, the individual with the best

fitness is chosen and it will correspond with one of the frequent

itemsets that the algorithm returns. The operation made in step 13

is very important. In it, records covered by the obtained itemset in

the previous step are penalized. Since this factor affects negatively

to the fitness function we achieve that in the following

evolutionary process the search space tends to not be repeated.

4.2 Structure of Individuals
Due to the nature itself of the problem to solve, that is, the fact

that the value of the attributes are taken from continuous domain,

we use real codification to represent the individuals. An individual

in GAR is a k-itemset where each gene represents the maximum

and minimum values of the intervals of each attribute that belongs

to such k-itemset.

Fig. 2. Representation of an individual (n-itemset)

In general, the frequent itemsets are formed by a variable number

of attributes, that is, for a database with n attributes there can be

frequent itemsets from size 2 to size n, as can be seen in Figure 2,

where li and ui are the limits of the intervals corresponding to the

attribute ai.

4.3 Initial Population
The generation of the initial population consists in the random

creation of the intervals of each attribute that conforms the

itemset. The number of attributes of each itemset is also chosen in

a random way between 2 and the maximum number of attributes

of the database. We condition the itemesets to cover at least a

record of the database and that their intervals have a reduced size.

4.4 Genetic Operators
The genetic operators used in GAR are the usual ones, that is,

selection, crossover and mutation. For the selection, we use an

elitist strategy to replicate the individual with the best fitness. By

means of the crossover operator we complete the rest of the

population, choosing randomly, and the individuals that will be

combined to form new ones. From each crossover between two

individuals two new ones are generated and the best adapted will

pass to the next generation. Given two individuals of the

population I = ([l1, u1], [l3, u3]) and I’ = ([l’1 , u’1], [l’2 , u’2],

[l’3 , u’3]), that are going to be crossed, the crossover operator

generates the following two offspring:

O1 = ([[l1, u1] V [l’1 , u’1]], [[l3, u3] V [l’3 , u’3]])

O2 = ([[l’1 , u’1] V [l1, u1]], [l’2 , u’2], [[l3 , u3] V [l3, u3]])

In Figure 3 a possible result of the crossover operator for

two itemsets of different size can be seen.

Fig.3. Example of a crossover operation

The mutation operator consists in altering one or more genes of

the individual, that is, in modifying the values of some of the

intervals of a itemset. For each limit of the selected interval we

have two possibilities, to increase or to decrease its value. In this

way we achieved four possible mutations: to shift the whole

interval to the left or to the right and to increase or to decrease its

size.

Finally, a process of adjusting the chosen individual is carried out.

This consists in decreasing the size of its intervals until the

number of covered records be smaller than the records covered by

the original itemset. Again, the goal of this post processing is to

obtain more quality rules.

4.5 Fitness Function
As any evolutionary algorithm, GAR has a function implemented

in order to evaluate the fitness of the individuals and to decide

which the best candidates are in the following generations.

In our scenery, we look for the frequent item sets with a larger

support, that is, those that cover more records in the database. But,

if we use this criterion as the only one to decide the limits of the

intervals the algorithm will try to span the complete domain of

each attribute. For this reason, it is necessary to include in the

fitness function some measure to limit the size of the intervals.

The fitness function f for each individual is:

IJCA Special Issue on “Artificial Intelligence Techniques - Novel Approaches & Practical Applications”

AIT, 2011

41

f(i) = covered − (marked ∗ ω) − (amplitude ∗ ψ) + (nAtr ∗ µ)

The meaning of the parameters of the fitness function is the

following:

Covered: It indicates the number of records that belong to the

itemset that represent to the individual. It is a measure similar to

support.

marked. It indicates that a record has been covered previously by

an itemset. We achieve with this that the algorithm tend to

discover different itemsets in later searches. To penalize the

records, we use a value that we call penalization factor (ω) to give

more or least weight to the marked record, that is, we will permit

more or least overlapping between the itemsets found depending

on this value. This factor will be defined by the user.

amplitude. This parameter is very important in the fitness

function. Its mission is to penalize the amplitude of the intervals

that conform the itemset. In this way, between two individuals

(itemsets) that cover the same number of records and have the

same number of attributes, the best information is given by the

one whose intervals are smaller, as we can see in Figure 4. By

means of the factor ψ it is achieved that the algorithm be more or

least permissive with regard to the growth of the intervals. Within

this concept, we penalize both the mean and the maximum

amplitude of the intervals.

Fig.4. Amplitude effect

number of attributes (nAtr). This parameter rewards the frequent

itemsets with a larger number of attributes. We will be able of

increasing or decreasing its effect by means of the factor µ.

5 EXPERIMENTAL RESULTS
To test if the developed algorithm finds in a correct way the

frequent itemsets, we have generated several synthetic databases.

We have used different functions to distribute the values in the

records of the database, in such a way that they group on

predetermined sets. The goal will be to find, in an accurate way,

the intervals of each one of the sets artificially created. Besides,

we have tested our tool with numeric databases from the Bilkent

University Function Approximation Repository [6].

To carry out the tests, the algorithm was executed with a

population of 100 individuals and 200 generations. We have

chosen the following parameters in the GAR algorithm: 15% of

selected individuals for the selection operator, 50% of crossover

probability and 80% of mutation probability.

5.1 Synthetic Databases
A first database formed by four numeric attributes and 1000

records was generated. The values were distributed, by means of a

uniform distribution, into 5 sets formed by predetermined

intervals. Besides, 500 new records were added with the idea of

introducing noise in the data, distributing their values, by means

of a uniform distribution, between the minimum and maximum

values of the domain of the intervals. In table 2 the 5 sets

synthetically created are shown and in table 2 we show the

frequent itemsets found by GAR.

The exact support for each of the synthetically defined sets is

13.34%, since each of them cover 200 records. As can be seen in

table 2, the support of each of the sets found is quite close to such

value, with a suitable size for each interval. The results show that

the algorithm behaves in a correct way when the database contains

a set of records that can not be grouped in any frequent itemsets.

The values used in the fitness function were: ω=0.7, ψ=0.6 and

µ=0.7.

Table 2. Sets synthetically created by means of a uniform

distribution

sets

A1ε [1, 15], A2 ε [7, 35], A3 ε [60, 75], A4 ε [0, 25]
A1ε [5, 30], A2 ε [25, 40], A3 ε [10, 30], A4 ε [25, 50]
A1ε [45, 60], A2 ε [55, 85], A3 ε [20, 25], A4 ε [50, 75]
A1ε [75, 77], A2 ε [0, 40], A3 ε [58, 60], A4 ε [75, 100]
A1ε [10, 30], A2 ε [0, 30], A3 ε [65, 70], A4 ε [100, 125]

Table 3. Frequent itemsets found by GAR

frequent itemsets sup(%) #records

[1, 15], [6, 35], [60, 76], [0, 26] 13.40 201

[5, 30], [24, 40], [10, 30], [26, 51] 13.07 196

[44, 61], [55, 84], [20, 35], [50, 75] 13.34 200

[74, 77], [0, 40], [58, 60], [75, 101] 13.34 200

[9, 29], [0, 30], [62, 71], [102, 125] 12.80 192

The first experiment was carried out creating sets independent

among them, that is, without overlapping. In order to test if the

tool works properly when the sets have records in common, a

second database was created in the same way that the first one but

with overlapping among the sets. In this case 600 records with the

values distributed into 3 sets were generated and other 200 records

were added to generate noise. In table 4 the three sets

synthetically created are shown and in table 5 we show the

frequent itemsets found by GAR.

Table 4. Sets synthetically created with overlapping

sets

A1 ε [18, 33], A2 ε [40, 57], A3 ε [35, 47]

A1 ε [1, 15], A2 ε [7, 30], A3 ε [0, 20]

A1 ε [10, 25], A2 ε [20, 40], A3 ε [15, 35]

The penalization factor was decreased to carry out this test in

order to permit overlapping among the itemsets. The values used

in the fitness function were: ω= 0.4, ψ = 0.6 and µ = 0.7. In both

examples we can see that the sizes of the intervals have been

reduced to discover the smallest intervals that cover the larger

number of records.

The next test was carried out to test the behaviour of the tool when

the itemsets are of a variable size. For this test we used the first

database but distributing the values only among some of the

attributes. In table 6 the five sets synthetically created are shown

and in table 7 we show the frequent itemsets found by GAR.

Table 5. Frequent itemsets found by GAR

frequent itemsets sup(%) #records

[16, 32], [41, 57], [35, 46] 22.12 177

[1, 16], [7, 30], [1, 22] 27.38 219

[11, 25], [19, 41], [13, 35] 23.88 191

[1, 24], [7, 37], [0, 34] 49.50 396

IJCA Special Issue on “Artificial Intelligence Techniques - Novel Approaches & Practical Applications”

AIT, 2011

42

Table 6. Sets variable size

sets

A1 ε [1, 15], A2 ε [7, 35], A4 ε [0, 25]

A2 ε [25, 40], A3 ε [10, 30], A4 ε [25, 50]

A2 ε [55, 85], A4 ε [50, 75]

A1 ε [75, 77], A2 ε [0, 40], A3 ε [58, 60], A4 ε [75, 100]

A1 ε [10, 30], A3 ε [65, 70]

The result of the test shows how the tool found the predefined

frequent itemsets. Besides, two new sets appeared as a

consequence of the random distribution of the rest of the values.

In this test the penalization factor and the number of attributes

were loosen to find itemsets of variable size. The values used in

the fitness function were: ω = 0.5, ψ = 0.6 and µ = 0.45.

5.2 Real-Life Databases
With the idea of evaluating our tool with real databases, we

carried out some experiments using the Bilkent University

Function Approximation Repository.

Due to the fact that the performance of the tool is based in an EA,

we have carried out five times the proofs in the examples and the

results fit in with the average values of such proofs. In 8 the

results obtained are shown. The first and second column indicates

the number of records and the number of numeric attributes of

each database respectively. The third column (#itemsets) indicates

the mean number of frequent itemsets found. The value of the

column support indicates the mean of support of the found

itemsets, while size shows the mean number of attributes of the

itemsets. The column %amplitude indicates the mean size of the

intervals that conform the set. This measure is significant to test

that the intervals of the sets are not too many ample. The last

column (%records) shows the percentage of records covered by

the found itemsets on the total records.

Due to the fact of not knowing a priori the distribution of the

values of the records, we use a minimum support of 20% and

thresholds of ω = 0.4, ψ = 0.7 and µ = 0.5 to carry out this tests.

The tool found frequent itemsets with high values of support but

without expanding the intervals in excess (amplitude percentage

below 30%).

Table 7. Frequent itemsets found by GAR

frequent itemsets sup(%) #records

[1, 15], [8, 34], [0, 24] 10.94 164

[25, 38], [12, 30], [24, 46] 10.20 153

[55, 77], [50, 73] 11.60 174

[75, 78], [1, 37], [58, 61], [75, 100] 12.40 186

[10, 30], [64, 70] 14.07 211

A2 ε [0, 40], A3 ε [13, 70] 42.74 641

A1 ε [0, 31], A3 ε [9, 73] 33.47 502

Table 8. Results for real-life databases by GAR
Database records #att #itemsets support size %ampl #records

baskball (BK) 96 5 5.6 36.69 3.38 25 100

bodyfat (FA) 252 18 4.2 65.26 7.45 29 86

bolts (BL) 40 8 5.6 25.97 5.29 34 77.5

pollution (PO) 60 16 4.8 46.55 7.32 15 95

quake (QU) 2178 4 6.9 38.65 2.33 25 87.5

sleep (SL) 62 8 5.2 35.91 4.21 5 79.03

stock price (SP) 950 10 6.8 45.25 5.8 26 99.26

vineyard (VY) 52 4 6.6 36.08 3 17 100

Table 9. Results for real-life databases
Database records #att #itemsets support size %ampl #records

baskball (BK) 96 5 7.6 36.69 5.38 20 90

bodyfat (FA) 252 18 6.2 65.26 8.45 38 76

bolts (BL) 40 8 8.6 25.97 9.29 44 67.5

pollution (PO) 60 16 6.8 46.55 9.32 25 90

quake (QU) 2178 4 8.9 38.65 3.33 30 80.5

sleep (SL) 62 8 7.2 35.91 6.21 15 89.03

stock price (SP) 950 10 8.8 45.25 6.80 46 90.26

vineyard (VY) 52 4 5.6 36.08 3.50 17 100

The Table 9 results are obtained by applying the approri

algorithms on different data sets to get frequent itemsets. By

comparing the Table 8 and 9, we can say that the Genetic

Algorithms approach for finding the Frequent Itemset is more

efficient.

6 CONCLUSIONS
We have presented in this paper a tool to discover association

rules in databases without the necessity of discretizing a priori, the

domain of the attributes. In this way the problem of finding rules

only with the intervals created before starting the process is

avoided. We have used an evolutionary algorithm to find the most

suitable amplitude of the intervals that conform a k-itemset, so

that they have a high support value without being the intervals too

wide. We have carried out several test to check the tools behavior

in different data distributions, obtaining satisfactory results if the

frequent itemsets have no overlapping, if they have overlapping

and if they are of a variable size. Nowadays, we are studying new

measures to include in the fitness function and to find, with more

accuracy, the size of the intervals in a k-itemset.

7. REFERENCES

[1] Agrawal, R., Imielinski. T., Swami, A.: Mining association

rules between sets of items in large databases. Proc. ACM

SIGMOD. (1993) 207–216, Washington, D.C.

[2] Chen M.S., Han J. and Yu P.S (1996) Data Mining : An

Overview from a Database Prospective, IEEE

Trans.Knowledge and Data Eng., 866-883

[3] Agarwal R, Imielinski. T., Swami, (1993) Database Mining:

a performance prospective, IEEE Transaction on

Knowledge and Data Engineering 5(6), 914-925.

[4] Agrawal, R., Srikant, R: Fast Algorithms for Mining

Association Rules. Proc. Of the VLDB Conference (1994)

487–489, Santiago (Chile)

[5] Pei M., Goodman E.D.,Punch F. (2000) Feature extraction

using Genetic Algorithm, Case Center for Computer Aided

Engineering and Manufacturing W. Department of

Computer Science

[6] Stuart J. Russel, Peter Novig (2008) Artificial Intellegence:

A Modern Approach

[7] Goldberg, D.E: Genetic algorithms in search, optimization

and machine learning. Addison-Wesley. (1989)

[8] Han J., Kamber M. Data Mining Concepts & Techniques,

Morgan & Kaufmann, 2000.

[9] Pujari A.K., Data Mining Technique, Universities Press,

2001

IJCA Special Issue on “Artificial Intelligence Techniques - Novel Approaches & Practical Applications”

AIT, 2011

43

[10] Anandhavalli M, Suraj Kumar Sudhanshu, Ayush Kumar

and Ghose M.K. (2009) Optimized Association Rule

Mining using Genetic Algorithm, Advances in Information

Mining, ISSN:0975-3265, Volume 1, Issue 2, 2009, pp-01-

04.

[11] Markus Hegland. The Apriori Algorithm – a Tutorial,

CMA, Australian National University, WSPC/Lecture Notes

Series, 22-27, March 30, 2005.

[12] Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.:

Discovering Frequent Closed Itemsets for Association Rules

[13] Park, J. S., Chen, M. S., Yu. P.S.: An Effective Hash Based

Algorithm for Mining Association Rules. Proc. of the ACM

SIGMOD Int‟l Conf. on Management of Data (1995) San

Jos´e, CA

[14] Savarese, A., Omiecinski, E., Navathe, S.: An efficient

algorithm for mining association rules in large databases.

Proc. of the VLDB Conference, Zurich, Switzerland (1995)

[15] Srikant, R, Agrawal, R.: Mining Quantitative Association

Rules in Large Relational Tables. Proc. of the ACM

SIGMOD (1996) 1–12

[16] Wang, K., Tay. S.H., Liu, B.: Interestingness-Based Interval

Merger for Numeric Association Rules. Proc. 4th Int. Conf.

KDD (1998) 121–128

