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ABSTRACT
Pulse compression is important for improving range resolution,
and the application of neural networks for pulse compression has
been well-explored in the past. However, the practical importance
of extracting rather weak echoes of targets that are either distant,
or have small radar cross-section, appears to have been
overlooked. Addressing this issue, neural networks with improved
performance are developed in this paper for both Barker and
Polyphase codes. We demonstrate that our networks perform
better in such practical situations together with better noise
tolerance and range resolution.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology – classifier
design and evaluation, feature evaluation and selection, pattern
analysis.

I.5.3 [Pattern Recognition]: Applications – signal processing,
waveform analysis.

J.2 [Physical Sciences and Engineering]: Electronics

General Terms
Algorithms, Performance, Design.

Keywords
Pulse compression, neural networks, binary codes, polyphase
codes

1. INTRODUCTION
Pulse Compression is an important technique used in radar to
improve the range resolution while maintaining a low transmitted
power, and maintain a good signal-to-noise ratio [20]. All pulse
compression techniques are essentially matched filtering. Such
filters are optimal when the signals are embedded in additive
white Gaussian noise. However, the large sidelobes of a matched

filter can increase the probability of false alarm. Several
techniques for sidelobe suppression have been proposed in the
literature, and many of these are based on the method of least
squares [1] and minimum mean square estimation [3]. While the
results obtained using these techniques are very encouraging, they
also involve inversion of considerably large matrices. Such
computations in real-time are rather difficult, and hardware
implementations are rather demanding.

Artificial Neural Networks (ANNs) are universal approximators
and offer ease in hardware implementation. Given any continuous
function )(f defined on a compact set, there exists an ANN

represented by )(F that can approximate )(f to any desired
accuracy [4, 6, 10]. Neural networks for pulse compression was
first explored in [13], and subsequently by several researchers [2,
5, 11, 17, 18, 19]. Here, the objective is to make the ANN
approximate an ideal autocorrelation sequence.

The sequences generally used in the aforementioned references to
train the ANNs are time-shifted sequences of the adopted codes.
During the testing phase, these sequences are added with white
Gaussian noise of different noise intensities resulting in varying
signal-to-noise ratio (SNR). However, in practice, the noise power
across the range cells remains largely the same; the probable value
depends on the specific radar system and its environment. Further,
in practical applications, the objective is to detect targets at the
farthest distance. Moreover, targets with small radar cross section
are also required to be detected. Both imply a requirement of
detecting rather weak echoes. Unfortunately, the immense
importance of extracting rather weak echoes of targets out of the
noise appears to be overlooked. Indeed, as illustrated by an
example presented in Section 2, the performance of neural
networks in the presence of weak echoes is rather unsatisfactory
when they are trained ignoring this reality. Therefore, the primary
focus of this paper is to design neural networks that can
successfully deal with these practical situations.

The second focus of this paper is to develop neural networks (with
aforementioned capabilities) for both binary phase and polyphase
codes. The latter has been ignored in most of the aforementioned
references. It may be pointed out that modern radar tend to
employ polyphase codes which are sequences of complex
numbers with constant magnitude but with variable phase. This
permits easier construction of longer sequences resulting in better
range resolutions. The principal drawback, however, is the need
for a more complex matched filter.
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In the context of pulse compression, it has been reported that
feedforward artificial neural networks (FFNNs) take longer time
to train compared to radial basis function networks (RBFNs) [11,
18]. Further, such networks exhibit poor robustness [12]. The
latter is primarily due to the lack of generalisation resulting from
fewer number of training patterns. (For good generalisation, the
size of the training set N must satisfy the condition











pN
ON = , where pN is the number of free parameters and

 is the permissible error [7].) In this paper, however, we
concentrate on feedforward artificial neural networks since such
networks are relatively easier to implement in hardware. Further,
in order to deal with practical situations mentioned earlier, the
size of the training set N considered in this paper is much
higher, and compares well with the condition in [7].

This paper is organised as follows: In Section 2 we design a
FFNN for Barker-13 code, and compare the results obtained with
that available in the literature. The design of FFNN for polyphase
codes is considered in Section 3.

2. BARKER-13 CODES
In this section we train a FFNN for pulse compression where the
pulses have been modulated by Barker-13 code:

1,1}1,1,1,1,1,1,,{1,1,1,1,1= S . We use a fully
connected FFNN with an input layer consisting of 13 nodes
(corresponding to the length of the Barker-13 code), a hidden
layer with five neurons, and one output neuron. The chosen
activation function for the hidden layer is )(tanh=)( bvav ,
and a linear activation function for the output layer.

We note that the number of hidden neurons generally considered
for pulse compression is three. However, this results in a higher
probability of false alarm with simulations indicating a rate of
about one false alarm in fifty trials. This is primarily due to the
fact that the corresponding FFNN has not approximated the ideal
autocorrelation sequence to the desired accuracy. Since it is well-
known that the approximating capacity of FFNNs depend on the
number of hidden neurons [16], it is clear that the number of
hidden neurons is to be increased. Indeed, experience indicate that
a choice of five hidden neurons considerably improves the
situation, and the improved overall performance worth the slight
increase in complexity.

Moreover, the training sequences generally used to train the
neural networks largely overlook the need to detect targets with
weak echoes. For instance, consider a FFNN with an input layer
of 13 nodes, hidden layer of 3 neurons, and one output neuron
trained for a normalised Barker-13 code. The performance of this
trained network for a received radar signal power of –20 dB with
an SNR of 40 dB is shown in Fig. 1. Evidently, on an average, the
target cannot be detected. On the contrary, the performance of a
matched filter is quite satisfactory.

Figure  1.  Performance of a neural network not trained for
weak echoes.

In order to account for rather weak echoes from possibly distant
targets or targets with low radar cross section, the network is
trained for various target-return powers. The chosen power levels
are 0 dB, –6 dB, –12 dB, –18 dB, –24 dB, and –30 dB
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, ,50,1,= n . (For simplicity, if a

target-return has a power level of x dB, that target is referred to
in the sequel as a ‘ x dB target’.) For each power level, time
shifted codes are presented to the neural network resulting in 26
input patterns. Thus, 156=N . The desired signal is an ideal
autocorrelation function: peak when the autocorrelation lag is
zero, and zero elsewhere. We use the back propagation algorithm
[7] to adjust the free parameters in the network.

2.1 Simulation Results and Discussions
The performance of the trained neural network is discussed in this
section. For brevity, the target is assumed to be in the 46th range
cell; similar results are obtained when a target is present in any
other range cell. The amplitudes and powers of the outputs of a
matched filter and the neural network are compared in Figures 2
and 3 for a 0 dB target with an SNR of 50 dB. The matched filter
has six equal sidelobes at –22.3 dB on either side of the peak; i.e.,
the signal-to-sidelobe ratio (SSR) is 22.3 dB. On the contrary, by
virtue of the chosen training sequences, the SSR obtained when
using the neural network is 50.9 dB which is higher compared to
that obtained using FFNN in [5, 13], RBF in [11], or other
techniques such as least squares inverse filter [1], but lesser than
if a FFNN is used with Bayesian regularisation [12]. This scenario
is further tested with SNRs 10 dB, 20 dB, and 40 dB, and the
resulting SSR (averaged over several simulation experiments)
summarised in Table 1. Clearly, there is a decrease in the SSR
with a decrease in SNR. However, the SSR obtained is still better
than that obtained for a conventional matched filter.

0 10 20 30 40 50 60 70 80 90 100
-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Range Cell

Po
we

r (
dB

)

Matched Filter

Neural Network



0 10 20 30 40 50 60 70 80 90 100
-0.1

0

0.1

0.2

0.3

Range Cell

Am
pli

tud
e

0 10 20 30 40 50 60 70 80 90 100
-0.2

0

0.2

0.4

0.6

Range Cell

Am
pli

tud
e

Matched Filter

Neural Network

0 10 20 30 40 50 60 70 80 90 100
-0.5

0

0.5

1

Range Cell

Am
pli

tud
e

0 10 20 30 40 50 60 70 80 90 100
-0.5

0

0.5

1

Range Cell

Am
pli

tud
e

Matched Filter

Neural Network

Table  1.  Barker Code: SSR for targets with different power
returns.

Target
Power

SNR (dB)

10 20 40 50
0 dB 37.28 41.92 48.45 50.15

– 10 dB 24.31 32.01 40.05 46.91

– 20 dB 22.31 29.20 42.12 45.12

– 40 dB 9.48 15.02 44.12 47.42

Figure  2.  Barker Code: Comparison of amplitude plots for a
0 dB target.

Figure  3.  Barker Code: Comparison of power plots for a 0 dB
target.

A comparison of the amplitudes and powers of the
outputs of a matched filter and the neural network for a –10 dB
target at 40 dB SNR are respectively shown in Figures 4 and 5.
Similarly, a comparison of outputs of matched filter and the
neural network for a –20 dB target and a –40 dB target, for SNRs
30 dB and 10 dB, are respectively depicted in Figures 6 and 7.
The SSR for these targets at different SNRs (averaged over
several simulation experiments) are also summarised in Table 1.
It is evident from the results depicted in these figures and
summarised in the table that the performance of an FFNN trained
for different target-return powers is quite satisfactory. A
comparison of the output powers for all cases is shown in Fig. 8.
For clarity, the same comparison for range cells from 33 to 59 are
shown in Fig. 9. Clearly, beyond the range of cells centred around
the one that contains the target, the sidelobe levels are lower than
that of the noise floor. Further, the sidelobe levels are reasonably
low enabling very weak target returns to be detected despite very
low SNRs.

Figure  4.  Barker Code: Comparison of amplitude plots for a
– 10 dB target.

Figure  5. Barker Code: Comparison of power plots for a
– 10 dB target.
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Figure  6. Barker Code: Comparison of power plots for a
–20 dB target.

Figure  7.  Barker Code: Comparison of power plots for a
– 40 dB target.

Except for situations with high SNRs, it is not possible to do this
with matched filtering for weak targets. As mentioned earlier, to
the best knowledge of the authors, there are no similar reported
results in the literature for neural-network based pulse
compression. Further, it is evident from Fig. 1 and the discussions
earlier in this section, when the neural network is not trained with
weaker echoes, as is generally reported, the performance in the
presence of such weak echoes is rather unsatisfactory.

3. POLYPHASE CODES P3
In this section we design a FFNN for the Lewis-Kretschmer P3
polyphase code [15] defined by

Figure  8. Barker Code: Comparison of power plots for targets
with different power returns.

Figure  9. Barker Code: Comparison of power plots for targets
with different power returns.
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We chose 30=M . Since the polyphase component has an in-
phase and a quadrature-phase component, the resulting network
should have the capacity to deal with complex numbers, and are
referred to as complex neural networks.

Indeed there are two ways to obtain complex neural networks [8]:
In the first approach, the real and imaginary parts are treated
separately, and two neural networks are trained, one for the real
part, and the other for the imaginary part. Since all the free
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parameters of both neural networks are real, the standard back
propagation algorithm (BPA) can be used to train the networks. In
the second approach, the free parameters are taken as complex
numbers, and a modified algorithm known as the complex BPA
[14] is used to train the network. It has been shown that the two
approaches are equivalent [8, 9]. In this paper we use the first
approach for the following reasons: The code pattern used has
distinct in-phase and quadrature phase components (i.e., the real
and imaginary parts). Hardware implementation is comparatively
simpler as complex arithmetic operations are not required.

Thus, we choose two fully-connected feedforward neural
networks, one for the in-phase and the other for quadrature
component. Each network consists of three layers, an input layer
with 30 source nodes, a hidden layer with nine neurons, and one
output neuron. The number of hidden neurons is considerably
higher compared to the neural network for Barker codes due to the
complexity of the polyphase codes. The chosen activation
function for the hidden layer is )(tanh=)( bvav , and a
linear activation function for the output layer. Similar to the case
of neural network developed for Barker-13 code, the number of
hidden neurons is chosen to reduce the probability of false alarm.

The two networks for P3 codes are trained using sequences
chosen in a manner similar to that of Barker-13 codes.
Accordingly the network is trained for target-return powers of 0
dB, –3 dB, – 6dB, –12 dB, –18 dB, –24 dB, and –30 dB. (An
additional training pattern with power -3 dB is introduced to
improve the sidelobe suppression.) Time shifted codes are
presented to the network as training patterns; the training set size

420=N . In contrast to the training sequences of Barker codes,
experience indicate that the neural networks are more robust when
the training sequences are corrupted by noise for the following
reason: While the general structure of a Barker code remains
largely unaffected with the addition of noise, there is a
considerable difference in the polycodes when noise is added. The
desired signal is again an ideal autocorrelation function: peak
when the autocorrelation lag is zero, and zero elsewhere.

3.1 Simulation Results and Discussions
The performance of the neural network is discussed here. The
target is assumed to be in the 41st range cell; similar results are
obtained when a target is present in any other range cell. The
amplitudes and powers of the outputs of a matched filter and the
neural network are compared in Figures 10 and 11 for a 0 dB
target at 50 dB SNR. The matched filter has peak sidelobe at –
20.85 dB to either side of the peak; i.e., the signal-to-sidelobe
ratio (SSR) is 20.85 dB. On the contrary, by virtue of the chosen
training sequences, the SSR obtained when using the neural
network is 45.18 dB. This scenario is further tested with SNRs 10
dB, 20 dB and 40 dB. It is repeated for all power returns and the
resulting SSR (averaged over several experiments) is summarised
in Table 2. For brevity, only the comparison of power plots for a –
40 dB target is shown in Fig 12.

Table  2.  SSR for targets with different power returns for P3
codes.

Target
Power

SNR (dB)

10 20 40 50
0 dB 15.12 23.98 36.44 43.51

– 10 dB 14.28 22.74 30.52 34.61

– 20 dB 10.24 17.48 27.73 30.95

– 40 dB 8.52 9.25 9.74 9.91

Figure  10. P3 Code: Comparison of amplitude plots for a 0 dB
target.

Figure  11. P3 Code: Comparison of power plots for a 0 dB
target.
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Figure  12.  P3 Code: Comparison of power plots for a – 40
dB target.

Figure  13. P3 Code: Comparison of power plots for targets
with different power returns.

The aforementioned results indicate that the performance of a
neural network for P3 code is quite satisfactory. The least SSR
obtained is 8.52 dB for a target of –40 dB at 10 dB SNR.
However, for lower SNRs it is quite possible that this target may
not be detected. Further, from Fig. 12 it can be observed that the
sidelobe suppression is comparable to that of a matched filter.
Nonetheless, it is to be noted that in contrast to a matched filter,
the sidelobe levels remain practically the same at different target
power levels at the same noise level of –50 dB, as illustrated in
Figures 13 and 14. This implies that targets with rather weak
returns can still be detected.

4. NOISE TOLERANCE
From the results presented in Sections 2 and 3, it is abundantly
clear that the neural networks presented in this paper are quite
robust toward noise. The SSR is typically lower for distant targets

Figure  14. P3 Code: Comparison of power plots for targets
with different power returns.

or targets with smaller radar cross-section. This is primarily
because of the signal power itself being low and the neural
network being forced to give a constant output in the range cells
without the targets for all power returns. Thus, to maintain the
sidelobe levels constant for all the power returns, the networks
give a relatively low SSR to lower power targets. Nevertheless,
the SSR provided is more than satisfactory and sufficient, since
the primary objective of target detection is always met.

Previously, RBFNs have been considered for the development of
robust noise tolerance networks [11, 18, 19]. In contrast, our
FFNNS are able to provide a substantial noise tolerance, enabling
the target detection at not only various SNR, but also for various
powers of radar return.

5. RANGE RESOLUTION
Range resolution is the ability of the radar to distinguish between
two targets that are close to each other in range. It has been
reported that neural networks for Barker code can distinguish two
targets in consecutive range cells; however, due to the structure of
the Barker code, a second target placed 5 range cells apart is not
detected when the target power ratio is more than 15 [11, 13].
However, using the neural network developed in this paper, this
problem does not arise even with target power ratio of 50. This is
illustrated in Fig. 15. The range resolution capability of P3 code is
illustrated in Fig. 16. Here two targets (of power ratio 10) are
placed 2 range cells apart.

6. CONCLUSION
In this paper, we developed a robust neural-network based pulse
compression with the capability of detecting targets of varied
power returns. We use the feedfoward neural network (FFNN)
structure for ease of hardware implementation. FFNNs are
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developed for both Barker-13 and P3 codes. Extensive
simulations indicate the efficacy of our networks to detect rather
weak echoes even at low SNRs, provide satisfactory noise
tolerance and range resolution capability.

Figure  15. Range Resolution for Barker-13 codes. Second
Target is easily detected.

Figure  16. Range Resolution for P3 codes. Second Target is
easily detected.
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