
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 20

63

Programming Language Inter-conversion

Dony George

FCRIT, Vashi, Navi Mumbai

Priyanka Girase
FCRIT, Vashi, Navi Mumbai

Mahesh Gupta
FCRIT, Vashi, Navi Mumbai

Prachi Gupta
FCRIT, Vashi, Navi Mumbai

Aakanksha Sharma
FCRIT, Vashi Navi Mumbai

ABSTRACT
In this paper, we have presented a new approach of programming

languages inter-conversion which can be applied to all types of

programming languages. The idea is about implementation of the

intermediate language for inter-conversion. This language can be

used to store the logic of the program in an algorithmic format

without disturbing the structure of the original program. This

paper also discusses the major advantages and challenges

associated with this conversion approach. We have also

performed a theoretical case study on the conversion of code

written in the C++ programming language to Java.

General Terms

Legacy System, Assembly Language, Operator Overloading,

Object Oriented Programming, Procedural Programming,

Extensive Markup Language (XML), Pointers

Keywords
Intermediate Language, XML Tags, Turing Machine, C++.

1.BACKGROUND

In the early stages of programming history, assembly languages (a

family of low level languages) were used for programming

computer, microprocessors & microcontrollers. However due to

their complexity, it was difficult to work with them.

Hence higher level programming languages came into existence.

To convert the program written in high level language into

machine language, a software known as a compiler is used. Higher

level languages were better than lower level languages because

they were much easier to work with. They had better program

readability and hence easy program management.

Over time, various higher level programming languages came into

existence starting from BASIC and COBOL, based on procedural

programming approach, up to C++ and Java, based on object

oriented programming approach.

All the modern programming languages are Turing Complete in

terms of their primary features (expressive power &

computation)[8]. The point where they differ is the environment

for which they are designed to work. Based on the environment,

for which a language has been designed, their secondary features

(Platform specific features) differ from each other. Each language

has its own specific features and hence a corresponding payoff in

the form of disadvantages associated with them.

For example, C++ allows direct access to processors‟ internal

registers. However, it lacks some important features that can lead

to serious errors such as system security not being maintained.

Though the keyword “goto” adds extra expressiveness to any C++

program, it also leads to serious problems related to memory

management and automatic de-allocation of objects.

Java on the other hand provides high level of system security. It

also supports various types of features through its language library

such as accessing network, GUI design, parallel processing etc.

However it is unable to provide access to machine registers.

Hence based on various factors such as user requirement and

system security, a specific programming language is chosen for

system implementation.

The difficulty arises when an existing code needs to be

implemented again using a different programming language. With

time, new programming languages are developed and it may be

necessary to switch our programs to them. The difficulties may

arise in the rewriting and testing of standards written in one

language in another language.

Hence it becomes necessary to have some tools perform these

tasks for us.

2.INTRODUCTION

Programming Languages‟ Conversion has been a challenging

issue since almost a decade. Conversion of a code written in one

language to another does not just mean the inter-conversion of

syntax between these languages. It is the operation of performing

transformation while maintaining the structure as far as possible.

At the panel of „International Conference on Software

Maintenance‟, Language conversion has been formulated as one

of the ten most challenging problems of next Century [2].

Various research papers have been written to express the ideas

related to this field. Early ideas were based on designing a simple

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 20

64

syntax replacing system. Most of modern ideas & research papers

concentrated on designing a compiler for the same purpose [3].

Replacement algorithms work for simple codes but are unable to

maintain the structure of complex codes. The modern approach

only converts the program but does not add the language specific

features of the destination programming language. Also,

operation of most of the compilers is based on converting a

specific source code into another specific source code. However,

there are many programming languages and designing a compiler

for inter-conversion between each of these languages would be

quite expensive.

The migration of a legacy code into another programming

language can be done at different levels which are increasingly

more ambitious and difficult to implement. Hence, as we go

higher up the levels, the need for manual conversion also

increases. At lower levels, migration takes the form of

transforming the code from one language to another. At higher

levels, the system structure may be changed as well, for example

conversion of a code written in a purely procedural language into

a purely object oriented language. At still higher levels, the global

architecture may also have to be changed.

3.DIFFICULTIES

The different languages provide different features based on the

platform which they are being implemented. This leads to

difficulties in designing an intermediate language for them as the

same feature may or may not be supported in the other language.

Hence code conversion becomes even more challenging because

the features of the source language need to be somehow simulated

into the destination language. Hence, this imposes a limitation on

code conversion.

Another problem which we have to deal with while building a

converter is the conversion of data types. Although we do not

always realize it, different programming languages usually have

different data type conventions. Consider the example of C++ &

java. The concept of pointer & pointer related operations are

supported only in C++. Although an equivalent feature is also

present in Java in the form of References (also called as an

Internal Pointer), both of them are not the same because java does

not allow arithmetic operations to be performed on references,

while arithmetic operations are allowed to be performed on

pointers in C++. Moreover, the data type sizes also vary from

platform to platform for C++, whereas they are fixed in Java.

With new technologies emerging every day, it becomes even more

difficult to maintain uniformity between different languages. Also

with advancement of programming languages, new features get

introduced. This demands consequent changes in all the inter-

conversion compilers associated with that language.

For example, ANSI C++ gets revised every 3-5 years. The revised

language may have new keywords. For example ANSI C++0x has

added constexpr as the new keyword [9]. Hence, all the

identifiers with the same name in early programs need to be

modified otherwise they will be interpreted incorrectly.

4.EXISTING TECHNOLOGIES
Some of the existing computer language converters are:

1. JLCA [7]:

Java Language Conversion Assistant is a tool that automatically

converts existing Java-language code into Visual C# code. It

provides developers using Visual Studio .NET 2003 a quick, low-

cost method of converting Java-language applications to Visual

C# and the .NET Framework. These applications can then be

extended to utilize XML Web services and the complete .NET

developer platform, including ASP.NET, ADO.NET, and

Microsoft Windows® Forms.

The drawback of using JLCA is that it converts the Web/JSP apps

to ASP.NET 1.1 apps, which is compatible with Visual Studio

2003. Visual Studio 2005 can be used only with the ASP.NET 2.0

apps. Thus the ASP.NET apps migrated by JLCA are not fully

compatible with Visual Studio 2005. Also, there is a limitation

with using Windows Forms Designer for the upgraded form in

Visual Studio because Windows Forms Designer cannot design

forms derived from „com.ms.wfc.ui.Form‟. So, any change in the

upgraded forms‟ user interface layout must be done manually.

2. BCX [6]:

BCX is a small command line tool that inputs a BCX BASIC

source code file and outputs a 'C' source code file which can be

compiled by any C or C++ compilers. Using BCX and a C

compiler, we can produce powerful 32-bit native code Windows

console mode programs, windows GUI applications, and

Dynamic Link Libraries (DLL's) without having to incur the costs

of an expensive commercial BASIC compiler.

The only drawback is that Hardware Voices Controls are disabled.

3. PERTHON [5][10]:

Perthon converts Python source code to human- readable Perl 5.x

source code. It makes use of Damian Conway's Parse::Rec

Descent for parsing, and aims to re-implement the Python

language as specified in the Python Reference Manual and BNF

grammar. Perthon is similar to Jython, which re-implements

Python on the JVM, except that Perthon works at the source code

(not byte code) level. Perthon does not yet support 'use', 'BEGIN',

'END', etc. This is due to how Perl handles these expressions: they

get executed while parsing.

It also does not handle 'bless', 'packages', etc. The references may

or may not be resolved correctly. The prefix/postfix operators are

not resolved as well.

5.OUR PROPOSITION

5.1 The Conversion Process
The conversion process is an iterative process, i.e., like a compiler

there are several processes involved in this. For a better

conversion process, the system should not be just a simple syntax

replacement system. It should also preserve the structure or

should modify it to make it even better by removing redundant

codes. Hence, it will be better if a compiler is designed for this

purpose. And the purpose of compilation is to convert the given

program into its corresponding Intermediate-language. This

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 20

65

Intermediate-language can be converted into any programming

language using another compiler.

5.2 Intermediate Language
The Intermediate-language grammar should be designed with

special care such that it should be able to represent all possible

programs i.e. it should able to represent machine level, functional

programs, procedural programs, as well as object oriented

programs. Nowadays various language conversion tools work

using a specific type of language only. [1]

The idea of having an intermediate language is that since all the

programming languages have some common features such as

logical and arithmetic operators, looping and conditional

statements, built-in data types, user defined data types, comments

etc. So, based on these facts a new language can be defined

having all these features to represent the characteristics of the

programming language.

While converting into destination language from intermediate

language, various other issues are also present. One major issue is

how to simulate the feature of source language into destination

language if it is not present. If a feature is directly not available in

the language then it can be modelled and implemented using a

separate library. Thus a library can be used to simulate the

features of source language and also to add the language specific

feature of the destination language while performing conversion.

There are various features which can only be found in native

language but modern languages do not support them. Such

features in any case cannot be represented in the destination

language. Various features have been deprecated from higher

programming language for security and readability purpose.

For example, machine languages can be written in C++ / C but

this feature is not available in Java. Also the keyword „goto‟ in

C++ allows flow of control to jump from a point in the code to

any other point. However, this jumping can lead to serious

problems related to memory management and security issues.

Hence, it is not recommended to have such a feature in a larger

system and so it has not been implemented in Java.

5.3 Process

5.3.1 Intermediate-language Conversion Process
Step 1

The Language is first processed through the compiler. The

compiler checks for any syntax errors and displays the errors if

present. The Process continues if and only if the program is

syntactically correct. This acts as a first layer in the compilation

process.

Schematic Representation of Language Conversion

Process

Step 2

The program is parsed to determine its structure. This structure

helps in creating a parsing tree which also helps in the resolution

of any ambiguity present in the program.

Step 3

The program is scanned again to determine the additional data

regarding the program such as variable names, function/ method

names, function overloading or overriding if found and other

important information.

Step 4

Now, based on the data collected in steps 2 & 3, the conversion

software converts the code into an intermediate language file.

Step 5

Further this converted code is passed through a special „Language

Optimizer Tool‟ which optimizes the code; so that any

unnecessary codes are removed and certain codes are replaced by

their optimal equivalent codes, if possible.

Larger Programs are generally written in modules. In such cases a

separate Intermediate-language file can be prepared for each

module. Later, individual files can be combined while converting

program into destination language.

The output contains the language which is an intermediate

representation of the source code. To convert this code into

Source Language

Syntax Analyzer

Parser Information

Gathering

Information

Processing

Optimizer

Optimized Intermediate

Code

Conversion System

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 20

66

destination language, the output needs to be passed through the

de-conversion process of destination compiler.

5.3.2 Destination Language Conversion Process

Schematic Representation of Destination Language

Conversion

Step 1

This steps checks if the syntax of the Intermediate-language is

correct or not. This is necessary to ensure that the destination

language is perfectly valid.

Step 2

Now, separate interpreter software can be used to convert the

intermediate language code into its destination language

equivalent.

Step 3

For further optimization, a specific pattern in a code can be

recognized which can be replaced by its equivalent optimum code.

This task can also be done manually. The major advantage of

separately implementing this optimizer is that, if a change has to

be made in the optimizer later, it can be simply made by changing

the optimizer without modifying the actual code.

Step 4

The output of the optimizer is the source code of the language.

The major advantage of this structure is that we have a separate

compiler for each language. Thus, changes or updates made in one

of the programming language do not affect processing of other

compilers.

Also, the advantage of having separate software for de-

compilation of the converted code into programs is that for each

individual language we can have a separate optimization function

to perform language specific optimization.

The intermediate language should be selected in such a way that it

should be able to represent all the programming languages. Thus,

a standardization committee can be chosen which can decide the

representation standard.

For Example: An XML language can be chosen for the

intermediate language. Consider, the java statement

 int a = 10 ;

This statement can be represented into intermediate language as

 "<start> <data_type>Integer <var>a := 10 <end> "

Here, each line starts with a <start> tag & ends with an <end>

tag.

Similarly, <Block> & </Block> can be used to represent a block

of codes.

The major advantage of using XML representation is that it can

represent all types of statement written in any programming

language.

6.APPLICATIONS
Nowadays, newer and better programming languages are being

developed frequently. Thus, with time programming language

needs to be changed. But various industry related standards and

other mathematical standards are written in older programming

language. Toolkits can play an important role in converting these

standards to modern language while maintaining the accuracy and

precision of the operation. Thus, this leads to a cost effective

solution.

Today businesses struggle with the problem of how to maintain

the investment made in their software applications that were

developed using "legacy" programming languages. Newer

programming languages can offer businesses access to new

technologies, growing developer populations, and lower

maintenance/development costs. Unfortunately, transitioning from

one programming language to another is not easy. Reengineering

and manual rewrites can take years, can consume large amounts of

manpower, and can result in lost/broken functionality. Automated

language conversion services solve these problems.

7. CASE STUDY (C++ to Java Converter)
To demonstrate our idea, we have performed a theoretical study

on the feasibility of converting a code written in C++ to a Java

code.

7.1 Background

7.1.1 C++
C++ is a statically typed, free-form, multi-paradigm, compiled,

general-purpose programming language. It is regarded as a

middle-level language, as it comprises of a combination of both

high-level and low-level language features.

The prominent application domains of C++ are system software,

application software, device drivers, embedded software, high-

performance server and client applications, and entertainment

software such as video games.

Intermediate Language

Syntax Analyzer

Interpreter

Destination Language

Converter

Destination Specific

Optimizer

Optimized Destination

Language Code

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 20

67

7.1.2 Java
Java derives much of its syntax from C and C++ but has a simpler

object model and fewer low-level facilities.

The prominent features of Java are its platform independence,

automatic garbage collection, vast availability of ready-made APIs

and so on. Java is the foundation for Web and networked services,

applications, platform-independent desktops, robotics, and other

embedded devices.

7.2 Comparison
Both C++ and Java have their unique advantages and

disadvantages making it difficult to make a statement as to which

is a better programming language.

7.2.1 Design Goals
C++, which extends the C language, was designed mainly for

system programming. C is a procedural programming language

designed for efficient execution. C++ has added support for

statically-typed object-oriented programming, exception handling,

scoped resource management, and generic programming, in

particular. It also added a standard library that includes generic

containers and algorithms.

Java was created initially to support network computing. It relies

on a virtual machine for security and high portability. It is

bundled with an extensive library designed to provide a complete

abstraction of the underlying platform. Java is a statically typed

object-oriented language that uses a syntax similar to C, but is not

compatible with it. It was designed with the goal of being easy to

use and accessible to a wider audience.

7.2.1.1 Speed
C++ is traditionally known to be as much as 3 times faster than

Java. However, Java programs' execution speed improved

significantly with the introduction of Just-in-time compilation in

1997/1998 for Java 1.1, the addition of language features

supporting better code analysis and optimizations in the Java

Virtual Machine itself, such as Hotspot becoming the default for

Sun's JVM in 2000.

7.2.1.2 Performance
Early versions of Java were significantly outperformed by

statically compiled languages such as C++. This is because the

program statements of these two closely related languages may

compile to a few machine instructions with C++, while compiling

into several byte codes involving several machine instructions

each when interpreted by a JVM.

In addition to executing the compiled code, computers running

Java applications also need to run the Java Virtual Machine

(JVM), whereas compiled C++ programs can be run without

external applications.

7.3 Conversion using Intermediate-language

7.3.1 Intermediate-language Syntax
Here, we will be discussing about how the intermediate language

should represent the C++ & Java programs for their inter-

convertibility. We are considering the language implementation to

be only for C++ to Java and vice versa. The intermediate language

for the conversion should be chosen such that it should be able to

represent each and every feature of ANSI C++ (We are

considering ANSI because it is the standard version of C++) and

Java.

It is said that Java has evolved from C++. There are various

features which are common to C++ & Java for e.g.: looping,

conditional statements, data types, classes, etc. Thus, these

features can be represented by tags, similar the ones used in XML,

i.e., each feature can be represented by a separate category tag.

For e.g.

Sample 1:

if (x == 5)

 {

 x = 7;

 }

The above statement can be represented by::

<IF> x <EQUALS> 5

<START>

 <begin> x = 7 <end>

 <END>

Sample 2:

class T{

 int i;

 public T(int ii){

 i = ii;

}

public void display(){

 System.out.println(“I is: “+i);

}

}

The above class definition can be implemented as:

<User_Type name = “class” identifier = “T” access =

“public”>

<Start>

 <begin> <data_type> integer <identifier> i <end>

 <method access = “public” type = “constructor”>

 <Start>

 <param type = “integer”

identifier = “ii”>

 <begin> i = ii <end>

<End>

<method access = “public”

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 20

68

type = “void”

identifier = “display”>

 <Start>

 <begin> <Display> <string>

“I is: “<value> I </Display>

<end>

 <End>

<End>

Each line starts with a <begin> tag and terminates with an <end >

tag.

The common tags such as IF, FOR, WHILE, SWITCH can be

used to represent key words. The scope can start from the

<START> tag and end with the <END> tag. Complex Systems

such as pointers, unsigned int are difficult to represent. Hence

they can be represented by predefined special tags. The difference

between the previous tags and this predefined special tag is that

the previous tags are handled differently during decoding of the

code.

Unsigned int can be represented by a separate class. So, we

construct the tags as <Lib_Unsigned> where the Lib prefix means

that the source library needs to be referred while converting the

code into the destination language. Apart from this, overloading is

not allowed.

This is how the language can be prepared.

Designing a converter includes designing the intermediate

language and designing the conversion library.

In C++ and Java, various features have been implemented

differently. For example, primitive data types such as unsigned int

and Boolean. To handle this, we can implement a class for

unsigned int and Boolean values. Similarly for taking input in

C++ we have the same format for all data types. For example

“cin>> x;” works for all the possible data types of x. The same is

not true for Java. For each type of data type we have a separate

function to take user input. Thus it will be better to have a class

that can help us to take user level input. While taking the user

level input we need to only call the method. In this way the library

can be designed to handle these kinds of issues.

Thus, as explained in the main idea, we can have the language

converter where language converter will keep all the keywords as

tags similar to XML tags. These tags are also used to define the

block. Comments can also be represented using these tags.

7.3.2 Issues
The issues that may arise during the conversion process are:

a. Pointers:

Pointers in C++ cannot be completely represented in Java but can

be approximated by using references. As long as the reference lies

within the boundary of the program, both have equal powers.

Thus pointers can be implemented.

b. Pre-processor:

Pre-processor mainly includes “# define” & “# include”

directives. The “# define” pre-processor directive is C++ can be

replaced by public final & static variable in java. For example-

define MAX 10

can be converted as

public final static MAX = 10;

c. Destructors:

Destructors are not present in java. Instead, we have the finalize

method associated with each class. Generally, finalize is called

just before an objects‟ memory is about to be set free. It is similar

to destructor but not exactly equivalent to it. Using the finalize

method to replace destructors may affect the performance in some

cases.

d. Friend Function:

They can be implemented by using composition. Create a new

class having the instance of each of the desired class. And write a

function that can access both the members. Even though this is

not a perfect solution, it will work in most cases.

e. Operator Overloading:

This can be implemented by adding a special name to the operator

and then replacing all the operator calls by its function call. Care

should be taken that the name of function should not match that of

any previously defined function.

f. Multiple Inheritances:

This is impossible to achieve. The only option is to use interfaces.

Thus, these are some of the issues that may crop up during inter-

conversion and how the library should manage these issues for the

conversion.

8.FUTURE DEVELOPMENT
In the future, it may even be possible to convert code between two

completely different platforms at the click of a button. This may

depend on advancements in the field of Artificial Intelligence

because a library alone can not do such a conversion perfectly and

recognize the replaceable pattern in the language. For e.g.,

converting a desktop application to a web application and vice

versa. Similarly it may be possible to create mobile applications

from the logic used to build a similar desktop or web application.

9. CONCLUSION
Achieving the maximum efficiency of conversion without

compromising the quality of converted system is the programmers'

dream. Even though language conversion might

seem to be easy, it is actually a Herculean task with many

different complications. It has been rightly placed among the top

10 challenges before the programming world. A lot of progress

needs to be made even before a reliable semi-automatic convertor

becomes available.

As a solution to this problem, we have proposed the creation of an

intermediate language which not only stores the code in an

algorithmic manner, but also maintains the program structure.

For this to be practical, we may have to implement a set of

specific standards for each major programming language so as to

enhance its convertibility. Finally separate

convertors to and from the intermediate language have to be

created for each language.

This is not an easy task, but if correctly implemented, it would

greatly change the future of software development. It would

simplify the process of developing programs,

maintaining them and hence bring down costs tremendously.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 20

69

10.REFERENCES
[1] Guarded commands, non-determinacy and formal derivation

of programs (White Paper) by Edsger K. Dijkstra

[2] The Realities of Language Conversions by A. A. Terekhov

and C. Verhoef (St. Petersburg University)

[3] Code Migration through Transformation: An Experience

Report by K. Martin and J. Wong

[4] Three Tools for Language Processing: BNF converter,

Functional Morphology and Extract by Markus Forsberg ,

Markus Forsberg , C Markus Forsberg , Ny Serie Nr

 [5] Perthon available at: http://freshmeat.net/projects/perthon

[6] BCX was originally started by Kevin Diggins. This project is

a direct continuation of his great efforts. It is now completely

open source and developed by a group. Available at: http://bcx-

basic.sourceforge.net

[7] The Microsoft Java Language Conversion Assistant (JLCA) is

a tool that automatically converts existing Java-language source

code to C# for developers who want to move their existing

applications to the Microsoft .NET Framework. Available at:

http://support.microsoft.com/kb/819018

[8] Programming language available at:

http://en.wikipedia.org/wiki/Programming_language

[9] C++0x (pronounced "see plus plus oh ex") available at:

http://en.wikipedia.org/wiki/C++0x

[10] What 'bridgekeeper' does available at: http://www.crazy-

compilers.com/bridgekeeper

