
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 29

13

Geometry Compression for 3D Polygonal Models using

a Neural Network

Nadine Abu Rumman
Instructor – CGs Dept.

PSUT- Jordan

Samir Abou El-Seoud
Professor – CS Dept.

PSUT- Jordan

Khalaf F. Khatatneh
Asso. Prof. - IT-School
Al-Balqa Appl. Univ.

Jordan

Christain Gütl
Key Research- IT-School
IICM – TU Graz, Austria

ABSTRACT

Three dimensional models are commonly used in computer

graphics and 3D modeling characters in animation movies and

games. 3D objects are more complex to handle than other

multimedia data due to the fact that various representations exist

for the same object, yielding a number of difficulties, among of

which are the distinct sources of 3D data. Research work in the

field of three dimensional environments is represented by a

broad spectrum of applications. In this paper we restrict

ourselves only on how to do compression using a neural network

in order to minimize the size of 3D models for making

transmission over networks much faster. The main objective

behind this compression is to simplify the 3D model and make

handling the large size of 3d objects much easier for other

processes. Even the process of rendering, digital watermarking,

etc., will be faster and more efficient.

Keywords

Geometry Compression, Artificial Intelligent, Genetic Algorithm,

Neural Network, Multilayer feed forward.

1. INTRODUCTION
Multimedia plays an increasingly important role in various

domains, including Web applications, movies, video games, and

medical visualizations. The rapid growth of digital media data

over the Internet makes it easy for everybody to access, copy,

edit, and distribute digital contents such as electronic documents,

images, sounds and videos. Motivated by this, much research

work has been dedicated to develop methods for digital data

copyright protection, tracing the ownership, and preventing

illegal duplication or tampering. One of the most effective

technique for the copyright protection of digital media data is the

process, in which hidden a specified signal (watermark) is

embedded in digital data while minimizing the size of the data

media. As we mentioned before, we will restrict ourselves in this

paper to the process of compression of 3D models. On one hand,

we are looking for an effective technique for copyright protection

by embedding a hidden specified signal in the digital data and at

the same time trying not to increase the size of the digital data

using effective compression technique. The existing efforts in the

literature on compression have been concentrated on media data

such as audio, images, and video, but there are no effective

methods for the compression of three dimensional (3D) models,

especially for easy distribution of the models over the Internet or

using other media. There are three aims behind any compression

technique: efficient rendering, progressive transmission, and

maximum compression [1].

 Efficient rendering: Encoding for efficient rendering tries to

reduce the amount of data that needs to be sent to the

graphics card. When each triangle of the mesh is rendered

individually the card must process every mesh vertex an

average of six times.

 Progressive transmission: Encoding for progressive

transmission uses incremental refinements of mesh

connectivity and geometry so that partial data already

represents the entire mesh at a lower resolution and

decoding starts with a small base mesh and expands the

collapsed edges in reverse order.

 Maximum compression: Encoding for maximum

compression tries to squeeze a given mesh into as few bits

as possible for faster network transmission and more

compact storage.

This paper provides the necessary information related to the

compression of 3D objects. First we will introduce the Artificial

Intelligent (AI) technique, namely the artificial neural network

(ANN), that we have chosen for applying our compression. Then,

we will explain why the Genetic Algorithm (GA) is not good

enough. Thereafter, we will start with our compression

methodology and algorithm. Toward this end, we will try to give

satisfactory answers to many important questions related to the

compression process of 3D objects. For example:

1. What are the main input parameters in a neural network in

a given input layer?

2. How many hidden layers exist?

3. What is the proposed architecture of the neural network

(NN)?

4. What is the error function for the neural network?

5. What is the tool of the neural network we used?

6. What are the training and testing data for the neural

network?

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 29

14

Finally we will present our results on three 3D models as

samples for our algorithm and functions in this domain. The

main objective from this compression stage is re-meshing 3D

objects for faster transmission, efficient rendering operations and

any other process.

2. BACK GROUND
The polygonal meshes representation of a 3D object is defined by

a set of plane polygons, which contain three kinds of elements:

faces, edges and vertices. Each vertex is defined by three

coordinates x, y, and z, each of which requires 4 bytes to be

represented [2]. Those meshes contain two kinds of information:

the geometry and connectivity. The geometry describes the

vertices’ coordinates in the 3D space, and the connectivity

describes how to connect these positions for better appearance

and high precision. This process of representing 3D object

requires a huge number of vertices and therefore a rapid increase

in the amount of data used. This in turn requires high bandwidth

transmission and high memory storage [3]. For this reason, the

proposed algorithm should compress the model without much

noise or loss of details, but with a smaller amount of data that is

easier to work with. After that, a robust watermark is inserted

into the model. The process of providing a robust digital

watermarking algorithm for polygonal meshes will be discussed

in another paper.

Our main target here is to produce a compression algorithm

which could be applied to 3D-based polygonal representations

and would be able to solve the problem of large size data in

polygonal representation. Since 3D polygonal meshes

representations are frequently used in computer graphics and

modeling, our compression algorithm should find a concise

representation of the 3D model and remove redundancy, with

minimal bit rate, distortion, and noise.

When the compressed 3D polygonal meshes become ready, a

robust digital watermark should be applied on these meshes after

selecting a suitable scheme to insert a watermark that covers the

entire model.

We will choose one of the AI techniques to solve the problem of

compression for 3D model. It is known that AI tools help to find

most critical vertices or points in a 3D model which in turn will

help us in all the processes to be executed.

Among all the AI tools available, the most suitable tools for our

case are the artificial neural network (ANN), and the genetic

algorithm (GA). Fuzzy logic is more capable for controller

systems than for our case, where there are no explicit rules found

to build compression models. Moreover, a fuzzy logic classifier is

simple to design but the computational speed is very low.

Membership functions, if-then rules, and logical operators

provide robust classifiers. However, tuning membership

functions with a large volume of features proved to be its only

disadvantage [4].

3. RELATED WORK
The first compression methods proposed for polygonal meshes

were particularly tailored to the problem of in-memory storage

and rendering. Many techniques exist for lossy and lossless

compression of 2D pixel images, while few techniques work with

3D objects. Among the first researchers who worked in this

domain is Michael Deering from Sun Microsystems [5], who

explained the concept of geometry compression working with 3D

triangles using quantization of coordinate values from 32 bits to

16 bits, a 9- bit index into a global list of values for vertex, and a

15 bit representation of color value, and provided a new

technique for lossy compression of 3D geometric data with ratio

of 6 and 3 to 1 achievable with little loss in displayed object

quality and with fast rendering, with geometry decompression

hardware for more limited local storage requirement.

The approach of Martin Isenburg and Stefan Gumhold [6] is

quite different; where they proposed an out-of-core mesh

compression technique that converts gigantic meshes into

streamable, highly compressed representation. During

decompression, only a small portion of mesh needs to be kept in

memory at any time. As full connectivity information is

available, along the decompression boundaries, which provides

seamless mesh access for incremental in-core processing on

gigantic meshes. Therefore, Isenburg et al. [7] suggest cutting

large meshes into smaller pieces that can be dealt with in-core.

They process each piece separately by first constructing explicit

connectivity, which is then compressed with two-pass coder,

before compressing the vertex positions with parallelogram

predictor in third pass. The pioneer in this field, Martin Isenberg,

introduces also, with Snoeyink, a simple schema for encoding the

connectivity of polygon mesh that is based on assigning a code to

each mesh edge and the mesh step encoding is directly applied

on polygonal representation avoiding the triangulation step. This

compression algorithm is called facefixer [1].

The spectral compression effort of Karni and Gotsman [8] was

based on the construction of a set of basis function for the

decomposition of a triangle mesh into signals. The low frequency

components in the signals correspond to smooth features and

high frequency component corresponds to discontinuities such as

creases, folds and corners.

Compression of Large engineering 3D models using automatic

discovery [9] was provided by applying the algorithm for

automatic discovery of repeating feature in 3D polygon mesh

models, compression of geometry of 3D polygon mesh models by

removing the redundancy in the representation of repeating

geometric feature patterns, and new scheme that can incorporate

the best results achieved in the area of connectivity of

compressed polygonal meshes.

Chow [10] proposed an algorithm that locally constructs the

generalized triangle mesh by starting with triangle strips adjacent

to edges and covers the object's mesh in a spiraling pattern,

taking care not to overflow the vertex queue. Using this

algorithm, an average ratio of 0.67 is obtained between the

number of explicitly coded vertices and the total number of

triangles. As reference, this ratio is 3 for independent triangles, 1

for infinitely long generalized triangle strips and ≈ 0.5 for a

generalized triangle mesh on an infinite regular mesh.

Rossignac proposed the Edgebreaker [11] connectivity coding

scheme that has a guaranteed worst case compressed rate of 2

bits per triangle for genus zero meshes with no more than one

boundary. One important point about Edgebreaker is that no

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 29

15

index needs to be coded with the split operation, which is unlike

that used in triangle meshes compression. King et al. [12] extend

the original Edgebreaker algorithm to handle pure quadrilateral

mesh, or Q-meshes and mixed quadrilateral and triangles mesh,

or QT-meshes. The proposed algorithm encodes quads by

splitting them into two triangles through one of their diagonals.

More recently, Khodakovsky et al. [13] extended valence based

coding to polygonal meshes, the entropies of the vertex graph and

its dual, the face graph, are obviously the same as the

information content does not change. Based on this remark, the

authors proposed that an optimal polygon mesh coder should be

dual.

Finally, mesh compression was applied using Multi-layer

Feed Forward Neural Network that was proposed by

Emmanouial Piperakis et al [14], where the applied neural

network includes the vertex coordinates, the connectivity and

normal information in one compact form, converting the discrete

and polygon mesh representation into an analytical form. The

neural compression representation is viable to 3D

transformations without the need for disrupting the accuracy of

the geometry. This basic method works for compression stage in

this paper. More details will be given in section 5.

4. GENETIC ALGORITHM EXPERIMENT
We can use a genetic algorithm (GA) to solve this problem.

When we try to use GA on a data set of 3D models, like the

sample of input data for the Cow model and Beethoven model

shown on figure 4.1 and figure 4.2 respectively, we see that they

are displayed in two forms:

 shaded form in Maya software and

 Point cloud in MATLAB, where the genetic algorithm

has been applied on this data.

We notice that the shaded form looks like 3D more than the point

cloud form because MATLAB doesn't have shading (Shading

addresses how different types of scattering or reflection are

distributed across the surface on an object). Shading does not

exist in the matlab environment and therefore the model appears

as point cloud in matlab. The package that used in this

Experiment is the Genetic Algorithm and Direct Search

Toolbox™ in matlab with the following characteristics:

 Goal:

The main goal is to reduce the number of vertices and minimize

the Mean Square Error (MSE) value:

] (4.1)

where V are the coordination vertices (3D point) in original mesh

V' the coordination vertices (3D point) in original mesh, N

denotes the number of rows and M the number of columns in the

array of vertices coordinates, respectively.

 Input Parameter:

Input data: vertices coordination's x, y and z {Matrix = number of

vertices * 3}, all of type double vector.

Number of variables: 3 (Best x, y and z point in model).

Number of generation: specifies the maximum number of

iterations for the genetic algorithm to be performed. It will be

100 generations.

Size of population: specifies how many individuals are in each

generation. With a large population size, the genetic algorithm

searches the solution space more thoroughly, thereby reducing

the chance that the algorithm will return a local minimum.

However, a large population size also causes the algorithm to run

more slowly. In our case, it will be 3000. (Depending on the

compression ratio for the model).

 Fitness Function:

It is the objective function that quantifies the optimality of a

solution (i.e. chromosome) in a genetic algorithm. A particular

chromosome may be ranked against all the other chromosomes.

Optimal chromosomes, or at least chromosomes which are more

optimal, are allowed to breed and mix their datasets by any of

several techniques (arithmetic cross ones, mutation, and ranking

selecting function). They produce a new generation that will

(hopefully) be even better. The fitness function here, based on

MSE, is used to limit the noise that happens in the compressed

object based on the equation given in 4.1.

Figure 4.1 represents the code written in MATLAB for fitness.

N_Fitness.m

--- function

[val,sol]=N_Fitness(sol)

load vertices;

[M,N]=size(vertices);

[V,F]=size(sol);

hat_v=zeros(M,N);

for i=1:V

 for j=1:F

 hat_v(i,j)=sol(i,j);

 end

end

tmp1=0;

tmp2=0;

for i=1:M

 for j=1:N

 tmp1=tmp1+(double(vertices(i,j))- double(hat_v(i,j)))^2;

 tmp2=tmp2+double(vertices(i,j))^2;

 end

end

val=tmp1/tmp2

save all_output_data;

--

Figure 4.1: Fitness Function.

 Sample of Input Data

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 29

16

 (a) (b)

Number of vertices =17414

 Figure 4.2: (a) Shaded Cow model and

 (b) Cloud point Cow model

 (a) (b)

Number of vertices = 12409

 Figure 4.3: (a) Shaded Beethoven model and

 (b) Cloud point Beethoven model.

This data set is entered into the genetic algorithm as matrix of

double value for x, y and z vertices coordinated.

 The Result :

Because it cannot be controlled how a genetic algorithm

distributes the chromosomes in the search area and chooses the

best vertices, the fitness function tries to determinate and limit

the noise, but the general-form of the 3D model is destroyed and

loses a lot of detailed. This makes compression, using the genetic

algorithm with MSE as the fitness function, not suitable for our

case. Even when a try is made to assign a given block of specific

range of vertices' coordinates (for example [from 15 vertices

choose 3 vertices]) to make genetic algorithm choose the best

vertices from each block, it was found that the compression is not

good enough for our case.

Below is the result for the sample Cow and Beethoven

models. Figure 4.4 shows the best-so-far optimal values for the

individual of existing variables, which are 3 variables. Figure

4.5 shows the relationship between fitness value and number of

generation.

Figure 4.4: Relationship between number of variables and

current best individual.

Figure 4.5: Relationship between fitness value and

number of generation.

Although the evolution in GA is inductive; in nature life, it

does not evolve all the time towards a good solution, it might

evolve away from bad circumstances. This may cause a species to

evolve into an evolutionary dead end. The GAs risk is in finding

a sub-optimal solution. If there is more than one solution, GA

will not work effectively. Moreover, the number of generations

that mutate in each stage makes the number of experiments very

large which takes a long time to get the solution. That happened

in our case, large compression ratio with huge noise destroying in

model, although figure 4.5 indicates that most the values of

fitness function are zeros, which is consider good but for visual

eye it not good enough because noise destroying in model. It

makes GA fail for the compression of 3D model. Figures 4.6 and

4.7 show the huge destruction that happened for the general form

of cow and Beethoven models.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 29

17

 (a) (b)

Number of vertices =17414 Number of vertices =1500

Figure 4.6: (a) Original Cow model

 (b) Compressed Cow model.

 (a) (b)

Number of vertices =17414 Number of vertices = 1500

Figure 4.7: (a) Original Beethoven model

 (b) Compressed Beethoven model.

5. 3D COMPARISON USING A NEURAL

NETWORK
An artificial neural network consists of a number of very simple

and highly interconnected processors, called neurons, which are

analogous to the biological neurons in the brain. The neurons are

connected by weighted links passing signals from one neuron to

another. Each neuron receives a number of input signals through

its connections. However, it never produces more than a single

output signal [15].

The neurons are connected by links, and each link has a

numerical weight associated with it. Weights are the basic means

of long-term memory in ANNs. They express the length. A

neural network learns through repeated adjustments of these

weights see figure 5.1.

Figure 5.1: Standard Architecture for Artificial Neural Network.

Each neuron receives several input links, computes a new

activation level and sends it as an output. The output is either the

final solution to the problem or an input to other neurons. The

neuron computes the weight sum of the input signals and

compares the result with a threshold value, . If the net input is

less than the threshold, the neuron output is -1. But if the net

input is greater than or equal to the threshold, the neuron

becomes activated and its output attains a value of +1.

In other words, the neuron uses the following transfer or

activation function:

Where X is net weighted input to the neuron, xi is value of input

i, wi is the weight of input i, N is number of neuron inputs, and

Y is the output of neuron.

The sigmoid function (see equation 5.1) transforms the input,

which can have any value between plus and minus infinity, into a

reasonable value in the range between 0 and 1, Neurons with this

function are used for forward networks.

One of the neural network types is the multilayer feed-forward

neural network (MLFF). MLFF is the basic type that will be

used in the proposed compression algorithm. A multilayer

perception is a feed forward neural network with one or more

hidden layers. Typically, the network consists of an input layer of

source neurons, and at least one hidden layer of computational

neurons.

In this case, the 3D object representation can depend completely

on the neural network, and the learning procedure contains three

main steps:

1. The presentation of the input sample.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 29

18

2. The calculation of the output.

3. The modification of the weights by specified training

rules.

The diagram shown in figure 5.2 presents the flow of data in the

compression stage of the proposed methodology for a 3D model

compression using a neural network.

3D Data Set Neural Network Construction
Neural Network Compressed

Data

Display the transform the 3D

object
Compare with original object

Figure 5.2: Data flow in proposed 3D Compression with ANN.

5.1 THE ALGORITHM

The proposed algorithm is based on the geometric and

connectivity data of the 3D object. The proposed algorithm

passes the following four stages:

As previously mentioned, the polygonal meshes representation of

the 3D object contains two kinds of information: the geometry,

and the connectivity, where compression is applied on each

separately.

The neural network employed in this thesis is an MLFF neural

network as a lossy compression method, where the neural

network tool used for this algorithm is Mathworks tool (Neural

Network Toolbox’s with Multi-layer Feed Forward Architecture)

the object is created manually (modeling them using Autodesk

Maya 2008) and before entering the data in neural, the pre-

processing should be applied on these data.

5.1.1 THE PRE-PROCESS DATA SET

Before the inputs are presented to the MLFF, the data should be

pre-processed. Accuracy of the outputs of the neural network

depends on the data pre-processing step. Following are the steps

that should be done in the data pre-processing stage.

 Normalization
 Extract main features of the dataset

The supervised learning problem is divided into a parametric and

nonparametric model. The problem here is in the nonparametric

model because there is no a priori knowledge of the form of the

function being estimated. Therefore, we need neural network

learning by example. The learning process will be performed by

a learning algorithm. The objective of this algorithm is to change

the synaptic weight of the network to attain a desired design

objective, which is the compressed object. Once the network has

been trained, it is capable of generalization.

The examples that we used in the neural network as input are ten

different 3D models that are created manually. Our target is to

create desired outputs. These outputs are generated by external

package for geometry compression using the Java 3D package.

Standard representations of a polygon mesh uses:

 an array of floats to specify the positions and

 an array of integers containing indices into the

position array to specify the polygons.

 A similar scheme is used to specify the various properties and

how they are attached to the mesh[16].

For large and detailed models this representation results in large

of substantial size, which makes their storage expensive and

their transmission very slow.

All the positions of vertices should be normalized between 0.0

and 7.0. This step helps the neural network to focus on the aim

of reducing the number of vertices and reconstructing the faces.

All vertices values should be normalized between [0-7] to make

all neural network work concentrate on compression. The

minimum value for all vertices of all ten created models should

be 0 and the maximum values should be 7.

5.1.2 JAVA 3D GEOMETRY

COMPRESSION

The geometry compression using the Java 3D package can

achieve (lossy) compression ratios of between 6 and 10 to 1,

depending on the original representation format and the desired

quality of the final level. The compression proceeds in four

stages. The first stage is the conversion of triangle data into a

generalized triangle mesh form. The second is the quantization of

individual positions, colors, and normals. Quantization of

normals includes a novel translation to non-rectilinear

representation. In the third stage the quantized values are delta

encoded between neighbors. The final stage performs a Huffman

tag-based variable-length encoding of these deltas.

Decompression is the reverse of this process. The decompressed

stream of triangle data is then passed to a traditional rendering

pipeline, where it is processed in full floating point accuracy.

The improvement in this package by adding optimization

compression makes the loss in detail of the 3D object much

smaller. Figure 5.7 displays the pseudo code that describes part

of this work. Also, there are some definitions that have been

added to identify the critical vertices so that removing those

critical vertices can be controlled such that the number of

vertices remains correspondent to these edges which are never

used by the compression algorithm. The following are the

definitions of those vertices depending on invariant vertex

identification that is provided by [18].

1. Boundary vertices of the 3D model are the vertices that

cannot be used by the compression algorithms because these are

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 29

19

critical vertices. These are defined as vertices which influence

the shape of the 3D model. These vertices can be used for

watermarking later on.

2. Neighboring vertices that split a vertex will never be used by

the compression algorithms.

3. Vertices of edges which do not form a simple triangle, cannot

be collapsed. This can be calculated from the data of 3D models

by storing all the vertices and faces according to the label of

vertices, and then checking every two consecutive faces. If any

two consecutive triangles have two of its vertices common so that

two vertices form the complex triangle, this pair of vertices

cannot be used by the compression algorithm.

The complexity of invariant vertex selection is analyzed as

follows according to [18]:

1. The complexity of selecting boundary vertices of the 3D

object by computing convex hull takes O (n log n) using quick

hull algorithm [19].

2. The neighboring vertices to split, which are computed after

each refinement. If p is the number of split vertices in a

refinement and d is the maximum degree for a vertex, then the

complexity for processing these set of vertices is O (p*d).

3. Computing the vertices of edges which are not simple

triangles. First, sort all the faces according to the label of vertices

which takes O (n log n). Then, checking between two

consecutive faces takes O (n) time. Therefore, we have

altogether

T (n) = n log n + n log n + n = 2n log n + n

Where T(n) is the time complexity and n is the number of

vertices

So, the overall worst time complexity for computing this set of

vertices is O (n log n).

Local_meshify_algorithm

Local_meshify_algorithm (MeshRegion *region)
{CurrGtmesh = gtmeshCreate0;

MeshInfoAddMesh (region, currGmesh);

% Step 1: Find meshes boundary edges.

FindMeshBoundaryEdges (&boundaryEdges, MAXJIBUFF-SIZE);

% Step 2: Chain together triangles of the first's trip.

BoundaryEdgesGetStripFacets (boundaryEdges, &currStripFacets);

While (more triangles in the mesh region) {

% Step 3: Find boundary edges of the previous strip.

FindNextBoundaryEdges (curSttipFacets, &boundaryEdges);

% Step 4: Chain together triangles of the next strip.

change = boundaryEdgesGetStripFacets (boundary Edge,

&n extStripFacets);

if (change)

{

% Mark the

new

boundaries

of the

current strip

facets.

StripFacetsMarkBoundary (currStripFacets);

MarkFacetsAsDiscovered (currStripFacets);

% Step 5: Assign vertex replacement codes to form a gtristrip.

GtriStrip = findGeneralTrianglesStrip

Figure 5.7: Pseudo code for the remesh algorithm.

The overall complexity of remesh algorithm using Java 3D

geometry compression, in addition to invariant vertex selection

algorithm, is as follows:

1. The invariant vertex selection algorithm complexity is

O(n log n).

2. The remesh algorithm complexity is T (n) =15n+4 which is

equal O (n).

Therefore the calculation for the overall time complexity for the

compression algorithm is:

T (n) = (2n log n +n) * (15n + 4)

T (n)=30 n2 log n +15 n2 +8 n log n +4n= O(n2log n)

where T (n) is time complexity and n is the number of vertices.

5.1.3 THE STRUCTURE OF a MLFF

NEURAL NETWORK

The neural network structure contains an input layer, one hidden

layer, and an output layer. All nodes are fully connected. The

network takes x, y and z coordinates of the vertices as input. The

activation function used is sigmoid logistic function.

A log-sigmoid function, also known as a logistic function,

is given by the relationship:

(5.1)

where β is a slope parameter. The sigmoid has the property

of being similar to the step function, but with the addition

of a region of uncertainty. Sigmoid functions in this

respect are very similar to the input-output relationships of

biological neurons, although not exactly the same. Below

is the graph of a sigmoid function.

Sigmoid functions are also prized because their derivatives

are easy to calculate, which is helpful for calculating the

weight updates in certain training algorithms. The

derivative is given by:

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 29

20

The number of neurons in input layer is 4, where the first

three input vectors are the x, y and z vertices coordinates and the

Fourth input is the max face ratio which indicates that the

maximum face must remain as it is. The number of neurons in

the hidden layer is between 3 and 4 because the compression

process overall depends on the hidden layer, so the number of

neurons should be absolutely less than the number of neurons in

the input layer in order to do compression. For higher accuracy,

the number of neurons in the hidden layer should be increased

but this reduces the compression process.

 A two-layer feed-forward network with sigmoid hidden neurons

and linear output neurons can fit multi-dimensional mapping

problems arbitrarily well, given consistent data and enough

neurons in its hidden layer.

Figure 5.5 displays the neural network structure with a given 3D

model object sample for input object and target object.

Figure 5.8: Feed Forward Neural Network Structure.

5.1.4 THE TRAINING SAMPLE

The network trains 1000 times with the training set until the

MSE is small; this MSE is the difference between the output

objects and desired objects, Training automatically stops when

generalization stops improving, as indicated by an increase in the

mean square error of the validation samples.

The network will be trained with the gradient-Descent back

propagation algorithm with adaptive learning rate. Training time

for each model takes approximately 2 hours and 30 minutes; for

all ten models takes 25 hours and 12 minutes.

Figure 5.10: The best performance of network retch in 857

epochs.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 29

21

Figure 5.11: Progressive function

5.2 THE RESULT

By using the MLFF neural network algorithm, the performance

of the 3D Java geometry compression increases. The compression

ratio is between 5.5 and 5:10 of the original object. The noise

ratio depends on the MSE, which provides minimum noise for

the visual eye. Figures bellow illustrates the result for the two

3D test models before and after compression.

Compression using the MLFF algorithm is an adaptive one. This

means that it can iteratively change the values of its parameters

(i.e., the synaptic weights). These changes are made according to

the learning rules. By inserting new models different than the 10

models used to train the MLFF neural network, the execution

time and accuracy for any new model becomes very fast and more

precise, respectively. Below are the figures and tables that show

the result.

 In the bunny model the vertex signal to noise ratio is 0.013 as

losing visual miter. For the horse model it is 0.004 losing which

is very small compared with the huge size that we are losing.

 (a)

Number of vertices =35947

(b)

Number of vertices

=3547

 (a)

Number of vertices =48485

 (b)

Number of vertices =4850

 Figure 5.11: (a) Original model

 (b) Compressed model.

Figure 5.8 shows the difference between our work with the

MLFF neural network and the Java 3D geometry compression

package. By fixing the compression ratio, figure 5.8 shows the

relation between compression ratio and noise ratio for the same

sample as that mentioned in figure 5.7. The figure indicates

clearly that our compression produces low noise ratio compared

with the Java 3D geometry compression package

3 3.5 4 4.5 5 5.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Compression Ratio

No
is

e
Ra

tio

Multi layer feed forward Neural Network

3D java Geomtery Compression Package

5.3 CONCLUSION
After the Java 3D geometry compression package has been

applied on the 10 created 3D objects, our MLFF algorithm has

trained by example. Hence, the performance of our MLFF

algorithm is much better than 3D Java package. The noise ratio

that we get is very low which in turn means only a few details

have been lost. The good performance of our MLFF algorithm is

shown very clearly in figure 5.8 and in table 5.1 below.

 Models Samples

/Performance

Metrics

Angel

Model

Happy

 Model

Horse

Model

Cow

Model

Max face ratio 0.30000 0.20000 0.30000 0.30000

Edges collapsed 165917 435087 33939 2032

No of final edges 213321 326313 43632 2610

Compression ratio 3.33304 5.05457 3.33343 3.33384

Mean Square Error 0.69465 0.82077 0.79666 0.76822

Vertex signal to noise ratio 0.24736 0.20456 0.00527 0.18737

*Execution Time

As CPU Time

76.74 191.65 15.35 1.10

TABLE 5.1

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 29

22

REFERENCES

[1]. M. Isenburg and J. Snoeyink, " Face Fixer Compressing Polygon

Meshes with Properties" , ACM Siggraph Conference Proc,

pp. 263-270,2001.

[2]. 3D Object Processing: Compression, Indexing and

Watermarking. Edited by J.-L. Dugelay, A. Baskurt and M.

Daoudi, John Wiley & Sons, Ltd. ISBN: 978-0-470-06542-6,

2008.

[3]. H. Donald and M. Pauline Barker. 1996, Computer Graphics,

C Version (2nd Edition), Publisher: Prentice Hall: ISBN-13:

978-0135309247.

[4]. A. M. Chang, and L. O. Hall 1992, The validation of fuzzy

knowledge-based systems, Fuzzy Logic for the Management

of Uncertainty, L.A. Zadeh and J. Kacprzyk, eds, John Wiley,

New York, pp. 589-604.

[5]. M.Deering. 1995, Geometry compression. ACM SIGGRAPH,

pp. 13–20

[6]. M. Isenburg, S.Gumhold. 2003, Out-of-core compression for

gigantic polygon meshes. ACM Trans. Graph. 22(3): 935-

942.

[7]. M. Isenburg, P. Alliez. 2002, Compressing Polygon Mesh

Geometry with Parallelogram Prediction, in Proceedings of

Visualization 2002, pages 141-146.

[8]. Z.Karni and C.Gotsman. 2000, Spectral compression of mesh

geometry, ACM SIGGRAPH, pp. 279–286.

[9]. D.Luebke and B.Hallen. 2001, Perceptually driven

simplification for interactive rendering. Eurographics

Workshop on Rendering Techniques, pp. 223–234.

[10]. M.Chow, Optimizel geometry compression for real-time

rendering, In Proceedinngs of IEEE Visualization '97,

Phowenix AZ, pp. 347-354, 1997

[11]. J. Rossignac. Edgebreaker: Connectivity compression for

triangle meshes. IEEE Transactions on Visualization and

Computer Graphics, 5(1), 1999.

[12]. D. King, J. Rossignac, and A. Szymczak. 1999, Connectivity

compression for irregular quadrilateral meshes, Technical

Report TR–99–36, GVU, Georgia Tech.

[13]. A.Khodakovsky, P.Alliez, M. Desbrun and P.Schröder. 2002,

Near-Optimal Connectivity Encoding of 2-Manifold Polygon

Meshes. Graphical Models 64(3-4): 147-168.

[14]. E. Piperakis, I. Kumazawa. 2001,3D Polygon Mesh

Compression with Multi Layer Feed Forward Neural

Networks, SYSTEMICS, CYBERNETICS AND

INFORMATICS VOLUME 1 - NUMBER 3.

[15]. S. Haykin. 1994, Neural Networks, A Comprehensive

Foundation. Macmillan College Publishing Company.

[16]. P.Maheshwari, P.Agarwal, and B. Prabhakaran. 2007,

Progressive compression invariant semi-fragile watermarks

for 3D meshes, in Proceedings of ACM Multimedia and

Security Workshop 2007 (MM&Sec 2007), Dallas , TX ,

USA , pp. 245-25.

[17]. D.Luebke and B.Hallen. 2001, Perceptually driven

simplification for interactive rendering. Eurographics

Workshop on Rendering Techniques, pp. 223–234.

[18]. Cox, M. Miller, J.Bloom. 2001 , Digital Watermarking:

Principle & Practice (The Morgan Series im Multimedia and

Information Systems), ISBN-1558607145.

[19]. R.Ohbuchi, M.Nakazawa and T.Takei, Retrieving. 2003, 3D

shapes based on their appearance, ACM SIGMM Workshop

on Multimedia Information Retrieval, Berkeley, California,

pp. 39–46.

