
©2010 International Journal of Computer Applications (0975 - 8887) 

Volume 1 – No. 29 

 

13 

 

Geometry Compression for 3D Polygonal Models using 

a Neural Network 
 

Nadine Abu Rumman 
Instructor – CGs Dept. 

PSUT- Jordan  
 

 

 

Samir Abou El-Seoud 
Professor – CS Dept. 

PSUT- Jordan  
 

 

 

Khalaf F. Khatatneh 
Asso. Prof. - IT-School 
Al-Balqa Appl. Univ. 

Jordan  
 
 

Christain Gütl 
Key Research- IT-School 
IICM – TU Graz, Austria  

 
 

 

 

ABSTRACT 

Three dimensional models are commonly used in computer 

graphics and 3D modeling characters in animation movies and 

games. 3D objects are more complex to handle than other 

multimedia data due to the fact that various representations exist 

for the same object, yielding a number of difficulties, among of 

which are the distinct sources of 3D data. Research work in the 

field of three dimensional environments is represented by a 

broad spectrum of applications. In this paper we restrict 

ourselves only on how to do compression using a neural network 

in order to minimize the size of 3D models for making 

transmission over networks much faster. The main objective 

behind this compression is to simplify the 3D model and make 

handling the large size of 3d objects much easier for other 

processes. Even the process of rendering, digital watermarking, 

etc., will be faster and more efficient. 

Keywords 

Geometry Compression, Artificial Intelligent, Genetic Algorithm, 

Neural Network, Multilayer feed forward. 

1. INTRODUCTION 
Multimedia plays an increasingly important role in various 

domains, including Web applications, movies, video games, and 

medical visualizations. The rapid growth of digital media data 

over the Internet makes it easy for everybody to access, copy, 

edit, and distribute digital contents such as electronic documents, 

images, sounds and videos. Motivated by this, much research 

work has been dedicated to develop methods for digital data 

copyright protection, tracing the ownership, and preventing 

illegal duplication or tampering. One of the most effective 

technique for the copyright protection of digital media data is the 

process, in which hidden a specified signal (watermark) is 

embedded in digital data while minimizing the size of the data 

media. As we mentioned before, we will restrict ourselves in this 

paper to the process of compression of 3D models. On one hand, 

we are looking for an effective technique for copyright protection 

by embedding a hidden specified signal in the digital data and at 

the same time trying not to increase the size of the digital data 

using effective compression technique. The existing efforts in the 

literature on compression have been concentrated on media data 

such as audio, images, and video, but there are no effective 

methods for the compression of three dimensional (3D) models, 

especially for easy distribution of the models over the Internet or 

using other media. There are three aims behind any compression 

technique: efficient rendering, progressive transmission, and 

maximum compression [1]. 

 Efficient rendering: Encoding for efficient rendering tries to 

reduce the amount of data that needs to be sent to the 

graphics card. When each triangle of the mesh is rendered 

individually the card must process every mesh vertex an 

average of six times. 

 

 Progressive transmission: Encoding for progressive 

transmission uses incremental refinements of mesh 

connectivity and geometry so that partial data already 

represents the entire mesh at a lower resolution and 

decoding starts with a small base mesh and expands the 

collapsed edges in reverse order. 

 
 Maximum compression: Encoding for maximum 

compression tries to squeeze a given mesh into as few bits 

as possible for faster network transmission and more 

compact storage. 
 

This paper provides the necessary information related to the 

compression of 3D objects. First we will introduce the Artificial 

Intelligent (AI) technique, namely the artificial neural network 

(ANN), that we have chosen for applying our compression. Then, 

we will explain why the Genetic Algorithm (GA) is not good 

enough. Thereafter, we will start with our compression 

methodology and algorithm. Toward this end, we will try to give 

satisfactory answers to many important questions related to the 

compression process of 3D objects. For example: 

1. What are the main input parameters in a neural network in 

a given input layer?  

2. How many hidden layers exist?  

3. What is the proposed architecture of the neural network 

(NN)?  

4. What is the error function for the neural network?  

5. What is the tool of the neural network we used?  

6. What are the training and testing data for the neural 

network?  
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Finally we will present our results on three 3D models as 

samples for our algorithm and functions in this domain. The 

main objective from this compression stage is re-meshing 3D 

objects for faster transmission, efficient rendering operations and 

any other process. 

2. BACK GROUND 
The polygonal meshes representation of a 3D object is defined by 

a set of plane polygons, which contain three kinds of elements: 

faces, edges and vertices. Each vertex is defined by three 

coordinates x, y, and z, each of which requires 4 bytes to be 

represented [2]. Those meshes contain two kinds of information: 

the geometry and connectivity. The geometry describes the 

vertices’ coordinates in the 3D space, and the connectivity 

describes how to connect these positions for better appearance 

and high precision. This process of representing 3D object 

requires a huge number of vertices and therefore a rapid increase 

in the amount of data used. This in turn requires high bandwidth 

transmission and high memory storage [3]. For this reason, the 

proposed algorithm should compress the model without much 

noise or loss of details, but with a smaller amount of data that is 

easier to work with. After that, a robust watermark is inserted 

into the model. The process of providing a robust digital 

watermarking algorithm for polygonal meshes will be discussed 

in another paper. 

Our main target here is to produce a compression algorithm 

which could be applied to 3D-based polygonal representations 

and would be able to solve the problem of large size data in 

polygonal representation. Since 3D polygonal meshes 

representations are frequently used in computer graphics and 

modeling, our compression algorithm should find a concise 

representation of the 3D model and remove redundancy, with 

minimal bit rate, distortion, and noise. 

When the compressed 3D polygonal meshes become ready, a 

robust digital watermark should be applied on these meshes after 

selecting a suitable scheme to insert a watermark that covers the 

entire model.  

We will choose one of the AI techniques to solve the problem of 

compression for 3D model. It is known that AI tools help to find 

most critical vertices or points in a 3D model which in turn will 

help us in all the processes to be executed. 

Among all the AI tools available, the most suitable tools for our 

case are the artificial neural network (ANN), and the genetic 

algorithm (GA). Fuzzy logic is more capable for controller 

systems than for our case, where there are no explicit rules found 

to build compression models. Moreover, a fuzzy logic classifier is 

simple to design but the computational speed is very low. 

Membership functions, if-then rules, and logical operators 

provide robust classifiers. However, tuning membership 

functions with a large volume of features proved to be its only 

disadvantage [4]. 

3. RELATED WORK 
The first compression methods proposed for polygonal meshes 

were particularly tailored to the problem of in-memory storage 

and rendering. Many techniques exist for lossy and lossless 

compression of 2D pixel images, while few techniques work with 

3D objects. Among the first researchers who worked in this 

domain is Michael Deering from Sun Microsystems [5], who 

explained the concept of geometry compression working with 3D 

triangles using quantization of coordinate values from 32 bits to 

16 bits, a 9- bit index into a global list of values for vertex, and a 

15 bit representation of color value, and provided a new 

technique for lossy compression of 3D geometric data with ratio 

of 6 and 3 to 1 achievable with little loss in displayed object 

quality and with fast rendering, with geometry decompression 

hardware for more limited local storage requirement. 

The approach of Martin Isenburg and Stefan Gumhold [6] is 

quite different; where they proposed an out-of-core mesh 

compression technique that converts gigantic meshes into 

streamable, highly compressed representation. During 

decompression, only a small portion of mesh needs to be kept in 

memory at any time. As full connectivity information is 

available, along the decompression boundaries, which provides 

seamless mesh access for incremental in-core processing on 

gigantic meshes. Therefore, Isenburg et al. [7] suggest cutting 

large meshes into smaller pieces that can be dealt with in-core. 

They process each piece separately by first constructing explicit 

connectivity, which is then compressed with two-pass coder, 

before compressing the vertex positions with parallelogram 

predictor in third pass. The pioneer in this field, Martin Isenberg, 

introduces also, with Snoeyink, a simple schema for encoding the 

connectivity of polygon mesh that is based on assigning a code to 

each mesh edge and the mesh step encoding is directly applied 

on polygonal representation avoiding the triangulation step. This 

compression algorithm is called facefixer [1]. 

The spectral compression effort of Karni and Gotsman [8] was 

based on the construction of a set of basis function for the 

decomposition of a triangle mesh into signals. The low frequency 

components in the signals correspond to smooth features and 

high frequency component corresponds to discontinuities such as 

creases, folds and corners. 

Compression of Large engineering 3D models using automatic 

discovery [9] was provided by applying the algorithm for 

automatic discovery of repeating feature in 3D polygon mesh 

models, compression of geometry of 3D polygon mesh models by 

removing the redundancy in the representation of repeating 

geometric feature patterns, and new scheme that can incorporate 

the best results achieved in the area of connectivity of 

compressed polygonal meshes. 

Chow [10] proposed an algorithm that locally constructs the 

generalized triangle mesh by starting with triangle strips adjacent 

to edges and covers the object's mesh in a spiraling pattern, 

taking care not to overflow the vertex queue. Using this 

algorithm, an average ratio of 0.67 is obtained between the 

number of explicitly coded vertices and the total number of 

triangles. As reference, this ratio is 3 for independent triangles, 1 

for infinitely long generalized triangle strips and ≈ 0.5 for a 

generalized triangle mesh on an infinite regular mesh. 

Rossignac proposed the Edgebreaker [11] connectivity coding 

scheme that has a guaranteed worst case compressed rate of 2 

bits per triangle for genus zero meshes with no more than one 

boundary. One important point about Edgebreaker is that no 



©2010 International Journal of Computer Applications (0975 - 8887) 

Volume 1 – No. 29 

 

15 

 

index needs to be coded with the split operation, which is unlike 

that used in triangle meshes compression. King et al. [12] extend 

the original Edgebreaker algorithm to handle pure quadrilateral 

mesh, or Q-meshes and mixed quadrilateral and triangles mesh, 

or QT-meshes. The proposed algorithm encodes quads by 

splitting them into two triangles through one of their diagonals. 

More recently, Khodakovsky et al. [13] extended valence based 

coding to polygonal meshes, the entropies of the vertex graph and 

its dual, the face graph, are obviously the same as the 

information content does not change. Based on this remark, the 

authors proposed that an optimal polygon mesh coder should be 

dual. 

Finally, mesh compression was applied using Multi-layer 

Feed Forward Neural Network that was proposed by 

Emmanouial Piperakis et al [14], where the applied neural 

network includes the vertex coordinates, the connectivity and 

normal information in one compact form, converting the discrete 

and polygon mesh representation into an analytical form. The 

neural compression representation is viable to 3D 

transformations without the need for disrupting the accuracy of 

the geometry. This basic method works for compression stage in 

this paper.  More details will be given in section 5. 

4. GENETIC ALGORITHM EXPERIMENT 
We can use a genetic algorithm (GA) to solve this problem. 

When we try to use GA on a data set of 3D models, like the 

sample of input data for the Cow model and Beethoven model 

shown on figure 4.1 and figure 4.2 respectively, we see that they 

are displayed in two forms:  

 shaded form in Maya software and  

 Point cloud in MATLAB, where the genetic algorithm 

has been applied on this data. 

We notice that the shaded form looks like 3D more than the point 

cloud form because MATLAB doesn't have shading (Shading 

addresses how different types of scattering or reflection are 

distributed across the surface on an object). Shading does not 

exist in the matlab environment and therefore the model appears 

as point cloud in matlab. The package that used in this 

Experiment is the Genetic Algorithm and Direct Search 

Toolbox™ in matlab with the following characteristics: 

 Goal:  

The main goal is to reduce the number of vertices and minimize 

the Mean Square Error (MSE) value: 

 

]               (4.1) 

 

where V are the coordination vertices (3D point) in original mesh 

V' the coordination vertices (3D point) in original mesh, N 

denotes the number of rows and M the number of columns in the 

array of vertices coordinates, respectively. 

 Input Parameter: 

Input data: vertices coordination's x, y and z {Matrix = number of 

vertices * 3}, all of type double vector. 

Number of variables: 3 (Best x, y and z point in model). 

Number of generation: specifies the maximum number of 

iterations for the genetic algorithm to be performed. It will be 

100 generations. 

Size of population: specifies how many individuals are in each 

generation. With a large population size, the genetic algorithm 

searches the solution space more thoroughly, thereby reducing 

the chance that the algorithm will return a local minimum. 

However, a large population size also causes the algorithm to run 

more slowly. In our case, it will be 3000. (Depending on the 

compression ratio for the model). 

 Fitness Function:  

It is the objective function that quantifies the optimality of a 

solution (i.e. chromosome) in a genetic algorithm.  A particular 

chromosome may be ranked against all the other chromosomes. 

Optimal chromosomes, or at least chromosomes which are more 

optimal, are allowed to breed and mix their datasets by any of 

several techniques (arithmetic cross ones, mutation, and ranking 

selecting function). They produce a new generation that will 

(hopefully) be even better. The fitness function here,  based on 

MSE, is used to limit the noise that happens in the compressed 

object based on the equation given in 4.1.  

Figure 4.1 represents the code written in MATLAB for fitness.  

N_Fitness.m 

---------------------------------------------     function 

[val,sol]=N_Fitness(sol) 

load vertices; 

[M,N]=size(vertices); 

[V,F]=size(sol); 

hat_v=zeros(M,N); 

for i=1:V 

    for j=1:F 

     hat_v(i,j)=sol(i,j); 

   end 

end 

tmp1=0; 

tmp2=0; 

for i=1:M 

    for j=1:N 

        tmp1=tmp1+(double(vertices(i,j))-  double(hat_v(i,j)))^2; 

       tmp2=tmp2+double(vertices(i,j))^2; 

    end 

end 

val=tmp1/tmp2 

save all_output_data; 

-------------------------------------------------------------------------------------- 

Figure 4.1: Fitness Function. 

 Sample of Input Data 
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               (a)                                           (b) 

 

 

Number of vertices =17414 

  Figure 4.2: (a) Shaded Cow model and  

                     (b) Cloud point Cow model                      

 

                      

 

 

 

               

 

 

       (a)                                         (b)                                          

Number of vertices = 12409           

       Figure 4.3: (a) Shaded Beethoven model and 

                    (b) Cloud point Beethoven model. 

                             

This data set is entered into the genetic algorithm as matrix of 

double value for x, y and z vertices coordinated. 

 

 The Result : 
 

Because it cannot be controlled how a genetic algorithm 

distributes the chromosomes in the search area and chooses the 

best vertices, the fitness function tries to determinate and limit 

the noise, but the general-form of the 3D model is destroyed and 

loses a lot of detailed. This makes compression, using the genetic 

algorithm with MSE as the fitness function, not suitable for our 

case. Even when a try is made to assign a given block of specific 

range of vertices' coordinates (for example [from 15 vertices 

choose 3 vertices]) to make genetic algorithm choose the best 

vertices from each block, it was found that the compression is not 

good enough for our case. 

Below is the result for the sample Cow and Beethoven 

models. Figure 4.4 shows the best-so-far optimal values for the 

individual of existing variables, which are 3 variables.  Figure 

4.5 shows the relationship between fitness value and number of 

generation. 

 

Figure 4.4: Relationship between number of variables and 

current best individual. 

 

Figure 4.5: Relationship between fitness value and 

number of generation. 

 

Although the evolution in GA is inductive; in nature life, it 

does not evolve all the time towards a good solution, it might 

evolve away from bad circumstances. This may cause a species to 

evolve into an evolutionary dead end. The GAs risk is in finding 

a sub-optimal solution. If there is more than one solution, GA 

will not work effectively. Moreover, the number of generations 

that mutate in each stage makes the number of experiments very 

large which takes a long time to get the solution. That happened 

in our case, large compression ratio with huge noise destroying in 

model, although figure 4.5 indicates that most the values of 

fitness function are zeros, which is consider good but for visual 

eye it not good enough because noise destroying in model. It 

makes GA fail for the compression of 3D model. Figures 4.6 and 

4.7 show the huge destruction that happened for the general form 

of cow and Beethoven models. 
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         (a)                                                    (b)              

Number of vertices =17414      Number of vertices =1500 

Figure 4.6: (a) Original Cow model  

           (b) Compressed Cow model. 

 

      

       

 

 

 

 

                   (a)                                             (b) 

Number of vertices =17414     Number of vertices = 1500 

Figure 4.7: (a) Original Beethoven model  

                    (b) Compressed Beethoven model. 

 

5. 3D COMPARISON USING A NEURAL 

NETWORK 
An artificial neural network consists of a number of very simple 

and highly interconnected processors, called neurons, which are 

analogous to the biological neurons in the brain. The neurons are 

connected by weighted links passing signals from one neuron to 

another. Each neuron receives a number of input signals through 

its connections. However, it never produces more than a single 

output signal [15]. 

The neurons are connected by links, and each link has a 

numerical weight associated with it. Weights are the basic means 

of long-term memory in ANNs. They express the length. A 

neural network learns through repeated adjustments of these 

weights see figure 5.1. 

 

Figure 5.1: Standard Architecture for Artificial Neural Network. 

 

Each neuron receives several input links, computes a new 

activation level and sends it as an output. The output is either the 

final solution to the problem or an input to other neurons. The 

neuron computes the weight sum of the input signals and 

compares the result with a threshold value, . If the net input is 

less than the threshold, the neuron output is -1. But if the net 

input is greater than or equal to the threshold, the neuron 

becomes activated and its output attains a value of +1.  

In other words, the neuron uses the following transfer or 

activation function:  

 

                                           

 

 

Where X is net weighted input to the neuron, xi is value of input 

i, wi  is the weight of input i, N is number of neuron inputs, and 

Y is the output of neuron. 

The sigmoid function (see equation 5.1) transforms the input, 

which can have any value between plus and minus infinity, into a 

reasonable value in the range between 0 and 1, Neurons with this 

function are used for forward networks. 

One of the neural network types is the multilayer feed-forward 

neural network (MLFF). MLFF is the basic type that will be 

used in the proposed compression algorithm. A multilayer 

perception is a feed forward neural network with one or more 

hidden layers. Typically, the network consists of an input layer of 

source neurons, and at least one hidden layer of computational 

neurons.  

In this case, the 3D object representation can depend completely 

on the neural network, and the learning procedure contains three 

main steps: 

 

1. The presentation of the input sample. 
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2. The calculation of the output. 

3. The modification of the weights by specified training 

rules. 

 

The diagram shown in figure 5.2 presents the flow of data in the 

compression stage of the proposed methodology for a 3D model 

compression using a neural network. 

 

3D Data Set Neural Network Construction
Neural Network Compressed 

Data 

Display the transform the 3D 

object
Compare with original object

Figure 5.2: Data flow in proposed 3D Compression with ANN. 

 

5.1 THE ALGORITHM  

The proposed algorithm is based on the geometric and 

connectivity data of the 3D object. The proposed algorithm 

passes the following four stages: 

As previously mentioned, the polygonal meshes representation of 

the 3D object contains two kinds of information: the geometry, 

and the connectivity, where compression is applied on each 

separately. 

The neural network employed in this thesis is an MLFF neural 

network as a lossy compression method, where the neural 

network tool used for this algorithm is Mathworks tool (Neural 

Network Toolbox’s with Multi-layer Feed Forward Architecture) 

the object is created manually (modeling them using Autodesk 

Maya 2008) and before entering the data in neural, the pre-

processing should be applied on these data.  

 

5.1.1 THE PRE-PROCESS DATA SET 

Before the inputs are presented to the MLFF, the data should be 

pre-processed. Accuracy of the outputs of the neural network 

depends on the data pre-processing step. Following are the steps 

that should be done in the data pre-processing stage. 

 

 Normalization  
 Extract main features of the dataset  

 

The supervised learning problem is divided into a parametric and 

nonparametric model. The problem here is in the nonparametric 

model because there is no a priori knowledge of the form of the 

function being estimated. Therefore, we need neural network 

learning by example. The learning process will be performed by 

a learning algorithm. The objective of this algorithm is to change 

the synaptic weight of the network to attain a desired design 

objective, which is the compressed object. Once the network has 

been trained, it is capable of generalization. 

The examples that we used in the neural network as input are ten 

different 3D models that are created manually. Our target is to 

create desired outputs. These outputs are generated by external 

package for geometry compression using the Java 3D package. 

Standard representations of a polygon mesh uses:  

 an array of floats to specify the positions and 

 an array of integers containing indices into the 

position array to specify the polygons. 

 

 A similar scheme is used to specify the various properties and 

how they are attached to the mesh[16].  

For large and detailed models this representation results in large 

of substantial size, which makes their storage expensive and 

their transmission very slow. 

All the positions of vertices should be normalized between 0.0 

and 7.0. This step helps the neural network to focus on the aim 

of reducing the number of vertices and reconstructing the faces. 

All vertices values should be normalized between [0-7] to make 

all neural network work concentrate on compression. The 

minimum value for all vertices of all ten created models should 

be 0 and the maximum values should be 7.  

5.1.2 JAVA 3D GEOMETRY 

COMPRESSION 

The geometry compression using the Java 3D package can 

achieve (lossy) compression ratios of between 6 and 10 to 1, 

depending on the original representation format and the desired 

quality of the final level. The compression proceeds in four 

stages. The first stage is the conversion of triangle data into a 

generalized triangle mesh form. The second is the quantization of 

individual positions, colors, and normals. Quantization of 

normals includes a novel translation to non-rectilinear 

representation. In the third stage the quantized values are delta 

encoded between neighbors. The final stage performs a Huffman 

tag-based variable-length encoding of these deltas. 

Decompression is the reverse of this process. The decompressed 

stream of triangle data is then passed to a traditional rendering 

pipeline, where it is processed in full floating point accuracy. 

The improvement in this package by adding optimization 

compression makes the loss in detail of the 3D object much 

smaller. Figure 5.7 displays the pseudo code that describes part 

of this work. Also, there are some definitions that have been 

added to identify the critical vertices so that removing those 

critical vertices can be controlled such that the number of 

vertices remains correspondent to these edges which are never 

used by the compression algorithm. The following are the 

definitions of those vertices depending on invariant vertex 

identification that is provided by [18]. 

 

1. Boundary vertices of the 3D model are the vertices that 

cannot be used by the compression algorithms because these are 
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critical vertices. These are defined as vertices which influence 

the shape of the 3D model. These vertices can be used for 

watermarking later on. 

2. Neighboring vertices that split a vertex will never be used by 

the compression algorithms. 

3. Vertices of edges which do not form a simple triangle, cannot 

be collapsed. This can be calculated from the data of 3D models 

by storing all the vertices and faces according to the label of 

vertices, and then checking every two consecutive faces. If any 

two consecutive triangles have two of its vertices common so that 

two vertices form the complex triangle, this pair of vertices 

cannot be used by the compression algorithm. 

 

The complexity of invariant vertex selection is analyzed as 

follows according to [18]: 

 

1. The complexity of selecting boundary vertices of the 3D 

object by computing convex hull takes O (n log n) using quick 

hull algorithm [19]. 

2. The neighboring vertices to split, which are computed after 

each refinement. If p is the number of split vertices in a 

refinement and d is the maximum degree for a vertex, then the 

complexity for processing these set of vertices is O (p*d). 

3. Computing the vertices of edges which are not simple 

triangles. First, sort all the faces according to the label of vertices 

which takes O (n log n). Then, checking between two 

consecutive faces takes O (n) time.  Therefore, we have 

altogether  

 

T (n) = n log n + n log n + n  = 2n log n + n    

Where T(n) is the time complexity and n is the number of 

vertices                                                               

So, the overall worst time complexity for computing this set of 

vertices is O (n log n). 
 

Local_meshify_algorithm 
------------------------------------------------------------------------------- 

Local_meshify_algorithm (MeshRegion *region) 
{CurrGtmesh = gtmeshCreate0; 

MeshInfoAddMesh (region, currGmesh); 

% Step 1: Find meshes boundary edges. 

FindMeshBoundaryEdges (&boundaryEdges, MAXJIBUFF-SIZE); 

% Step 2: Chain together triangles of the first's trip. 

BoundaryEdgesGetStripFacets (boundaryEdges, &currStripFacets); 

While (more triangles in the mesh region) { 

% Step 3: Find boundary edges of the previous strip. 

FindNextBoundaryEdges (curSttipFacets, &boundaryEdges); 

% Step 4: Chain together triangles of the next strip. 

change = boundaryEdgesGetStripFacets (boundary Edge, 

&n extStripFacets); 

if (change) 

{ 

% Mark the 

new 

boundaries 

of the 

current strip 

facets.  

StripFacetsMarkBoundary (currStripFacets); 

MarkFacetsAsDiscovered (currStripFacets); 

% Step 5: Assign vertex replacement codes to form a gtristrip. 

GtriStrip = findGeneralTrianglesStrip  

------------------------------------------------------------- 

Figure 5.7: Pseudo code for the remesh algorithm. 

 

The overall complexity of remesh algorithm using Java 3D 

geometry compression, in addition to invariant vertex selection 

algorithm, is as follows: 

 

1. The invariant vertex selection algorithm complexity is        

O(n log n). 

2. The remesh algorithm complexity is T (n) =15n+4 which is 

equal O (n). 

Therefore the calculation for the overall time complexity for the 

compression algorithm is: 

  

T (n) = (2n log n +n) * (15n + 4) 

T (n)=30 n2 log n +15 n2 +8 n log n +4n= O(n2log n)                      

 

where T (n) is time complexity and n is the number of vertices. 

5.1.3 THE STRUCTURE OF a MLFF 

NEURAL NETWORK 

The neural network structure contains an input layer, one hidden 

layer, and an output layer. All nodes are fully connected. The 

network takes x, y and z coordinates of the vertices as input. The 

activation function used is sigmoid logistic function.  

A log-sigmoid function, also known as a logistic function, 

is given by the relationship: 

 

                                                                                 

(5.1) 

 

where β is a slope parameter. The sigmoid has the property 

of being similar to the step function, but with the addition 

of a region of uncertainty. Sigmoid functions in this 

respect are very similar to the input-output relationships of 

biological neurons, although not exactly the same. Below 

is the graph of a sigmoid function. 

 

 

 

 

 

 

 

 

 

Sigmoid functions are also prized because their derivatives 

are easy to calculate, which is helpful for calculating the 

weight updates in certain training algorithms. The 

derivative is given by: 
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The number of neurons in input layer is 4, where the first 

three input vectors are the x, y and z vertices coordinates and the  

 

Fourth input is the max face ratio which indicates that the 

maximum face must remain as it is. The number of neurons in 

the hidden layer is between 3 and 4 because  the compression 

process overall depends on the hidden layer, so the number of 

neurons should be absolutely less than the number of neurons in 

the input layer in order to do compression. For higher accuracy, 

the number of neurons in the hidden layer should be increased 

but this reduces the compression process. 

 A two-layer feed-forward network with sigmoid hidden neurons 

and linear output neurons can fit multi-dimensional mapping 

problems arbitrarily well, given consistent data and enough 

neurons in its hidden layer.  

Figure 5.5 displays the neural network structure with a given 3D 

model object sample for input object and target object. 

 

 

 

 

Figure 5.8: Feed Forward Neural Network Structure. 

 

5.1.4 THE TRAINING SAMPLE 

The network trains 1000 times with the training set until the 

MSE is small; this MSE is the difference between the output 

objects and desired objects, Training automatically stops when 

generalization stops improving, as indicated by an increase in the 

mean square error of the validation samples. 

The network will be trained with the gradient-Descent back 

propagation algorithm with adaptive learning rate. Training time 

for each model takes approximately 2 hours and 30 minutes; for 

all ten models takes 25 hours and 12 minutes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.10: The best performance of network retch in 857 

epochs. 
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Figure 5.11: Progressive function 

 

5.2 THE RESULT  

By using the MLFF neural network algorithm, the performance 

of the 3D Java geometry compression increases. The compression 

ratio is between 5.5 and 5:10 of the original object. The noise 

ratio depends on the MSE, which provides minimum noise for 

the visual eye. Figures bellow illustrates the result for the two 

3D test models before and after compression. 

Compression using the MLFF algorithm is an adaptive one. This 

means that it can iteratively change the values of its parameters 

(i.e., the synaptic weights). These changes are made according to 

the learning rules. By inserting new models different than the 10 

models used to train the MLFF neural network, the execution 

time and accuracy for any new model becomes very fast and more 

precise, respectively. Below are the figures and tables that show 

the result. 

 In the bunny model the vertex signal to noise ratio is 0.013 as 

losing visual miter. For the horse model it is 0.004 losing which 

is very small compared with the huge size that we are losing. 

 

 

                    

  (a) 

Number  of vertices =35947 

         

 

 

(b) 

Number of vertices 

=3547 

 

                             (a) 

Number of vertices =48485 

                          (b) 

Number of vertices =4850 

 Figure 5.11: (a) Original model  

                (b) Compressed model. 

 
 

 

 

 

 

Figure 5.8 shows the difference between our work with the 

MLFF neural network and the Java 3D geometry compression 

package. By fixing the compression ratio, figure 5.8 shows the 

relation between compression ratio and noise ratio for the same 

sample as that mentioned in figure 5.7. The figure indicates 

clearly that our compression produces low noise ratio compared 

with the Java 3D geometry compression package  
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5.3 CONCLUSION   
After the Java 3D geometry compression package has been 

applied on the 10 created 3D objects, our MLFF algorithm has 

trained by example. Hence, the performance of our MLFF 

algorithm is much better than 3D Java package. The noise ratio 

that we get is very low which in turn means only a few details 

have been lost. The good performance of our MLFF algorithm is 

shown very clearly in figure 5.8 and in table 5.1 below. 

 

  Models Samples 

/Performance 

Metrics 

Angel  

Model 

Happy 

 Model 

Horse  

Model 

Cow 

Model 

Max face ratio 0.30000 0.20000 0.30000 0.30000 

Edges collapsed 165917 435087 33939 2032 

No  of final  edges 213321 326313 43632 2610 

Compression ratio 3.33304 5.05457 3.33343 3.33384 

Mean Square Error 0.69465 0.82077 0.79666 0.76822 

Vertex signal to noise ratio 0.24736 0.20456 0.00527 0.18737 

*Execution Time 

As CPU Time 

76.74 191.65 15.35 1.10 

TABLE 5.1 
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