Abstract

Is the newly born quantum cryptography the ultimate solution for information security? A technique needs to be both theoretically strong and practically viable. But quantum cryptography comes to naught in the latter. We present here some of the quantum's theoretical weaknesses like lack of digital signatures (or any algorithm) along with its many real time implementation problems. We further pursue with the discussion about the potency of classical cryptography and its splendid capabilities in providing security.

Reference

4. Identifying vulnerabilities of quantum cryptography in secure optical data transport
Contemporary Cryptography and Arguments for Classical Cryptography's Endurance alongside the Propitious Quantum Cryptography

Stamatios V. Kartalopoulos, PhD, Williams Professor in Telecommunications Networking, The University of Oklahoma

5. Quantum Cryptography: Public Key Distribution And Coin Tossing: Charles H. Bennett (IBM Research, Yorktown Heights NY 10598 USA) & Gilles Brassard (dept. IRO, Univ. de Môtréal, H3C 3J7 Canada)


10. Optimal cloning of single-photon polarization by coherent feedback of beam splitter losses Holger F Hofmann and Toshiki Ide


Index Terms

Computer Science Security

Key words

quantum cryptography

classical cryptography
Contemporary Cryptography and Arguments for Classical Cryptography's Endurance alongside the Propitious Quantum Cryptography