Abstract

Caching is a fundamental technique commonly employed to hide the latency gap between
Analysis and Predictability of Page Replacement Techniques towards Optimized Performance

memory and the CPU by exploiting locality in memory accesses. On today’s architectures a cache miss may cost several hundred CPU cycles [1]. In a two-level memory hierarchy, a cache performs faster than auxiliary storage, but is more expensive. Cost concerns thus usually limit cache size to a fraction of the auxiliary memory’s size. This paper represents a comparative predictability about some of the traditional and new replacement techniques in contrast with OPTIMAL replacement technique.

References

- D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S. Kim, “LRFU: A spectrum of policies that subsumes the least recently used and least frequently used policies,”

- Development of a Virtual Memory Simulator to Analyze the Goodness of Page Replacement Algorithms Fadi N. , Sibai, Maria Ma, David A. Lill
- The LRU-K Page Replacement Algorithm For Database Disk Buffering Elizabeth J. O’Neill 1, Patrick E. O’Neill, Gerhard Weikum2 SIGMOD 15193 AVaahin~ton, DC,USA @1993ACM.

Index Terms

Computer Science Information Technology

Keywords

Memory Management Cache Performance Replacement Policy Hit Ratio Analysis