Abstract

Information systems of many organizations are processed through system of interrelated ‘C’ programs. Since, the ‘C’ programming language was developed in the early second half of the last century. It couldn’t incorporate to facilitate the current day’s technology. Therefore, the programs developed based on this are not coping with the advancement of technology. There is a need to harness the useful business information buried across the legacy ‘C’ systems and the advancement in the information technology. This act of harnessing the old virtues in new environment is like resolving the labyrinth. The paper proposes a way of resolving this deadlock situation by reverse engineering the legacy ‘C’ systems into the design specifications of the target environment, and then forward engineering the target design specification into the desired language code. This paper attempts to develop a reengineering methodology that automatically abstracts the view elements like attributes, functional dependencies, interrelationships between group of attributes and actor’s interface, etc. The correctness and completeness of these abstractions are ensured using Unified Modeling language (UML) diagrams. The methodology blends the reverse engineering and re-design stages into a unified process.

Reference
An Ameliorated Methodology for the design of Object Structures from legacy ‘C’ Program

Index Terms

Computer Science

Information Systems

Key words

Functional dependencies

abstraction

reengineering

legacy systems