Abstract

In this paper, Artificial Neural Network, one of the Artificial Intelligence (AI) techniques, for the Volt / Var control in power distribution systems with dispersed generation (DG) is proposed. Artificial neural networks have been considered due to their ability for real time control, simpler calculations and adaptability to different operating conditions. Neuro-controllers are much more effective, fast acting than conventional controllers. Neural network for controlling Step voltage regulator (SVR) with line rise compensation (LRC) /line drop compensation (LDC) function has been presented. The neural network based controller has been simulated for a radial distribution system with DG and the neuro-controller shows promising results after testing.

Reference

- Masters C.L., "Voltage rise: the big issue when connecting embedded generation to long 11kV overhead lines", Power engineering Journal, IEE, Vol.16, No.1, pp.5-12, 2002
- “IEEE standard for interconnecting distributed resources with electric power systems” IEEE standard, 1547TM -2003
- Khoan Tran and Mohammad Vaziri, “Effects of dispersed generation on distribution systems”, IEEE conference, 2005
- Rajshekaran S., “Neural networks, fuzzy logic and genetic algorithms: synthesis and applications” Prentice-Hall of India, 2004
- Tae-Eung Kim and Jae-Eon Kim, “Considerations for the feasible operating range of distributed generation interconnected to power distribution system”, IEEE Conference, pp. 42-48, 2002
- K.S. Swaroop and P.S. Subhash, “Neural network approach to voltage and reactive power control in power systems” IEEE conference, pp. 228-233, 2005

Index Terms

Power Engineering Control Systems

Key words

Artificial Intelligence Artificial neural network

Dispersed generation
Distribution system

- Line drop compensation
- Line rise compensation

Step Voltage regulator

Voltage / Reactive power control