A Mobile Sensor Network is a geographically distributed network which owes its name to the presence of mobile sink or sensor nodes within the network. In this paper we will present and discuss the energy-efficient contention-based and scheduled based medium access control (MAC) protocols for mobile sensor networks (MSNs). Most of the MAC protocols such as T-MAC, D-MAC, and the more commonly utilized SMAC proposed for wireless sensor networks assume sensors to be stationary after deployment, which usually provide very bad network performance in scenarios involving mobile sensors.

Handling mobility in wireless sensor networks in an energy-efficient way is a
new challenge. We present new MAC layer approaches to support mobility in WSNs such as
MS-MAC extends S-MAC to include mobility-awareness by decreasing this sleep duration when
mobility is detected. S-MAC with Extended Kalman filter (EKF) reduces mobility-incurred losses
by predicting the optimal data frame size for each transmission. M-LMAC (Mobile LMAC) as a
TDMA-based MAC protocol which can support continuous mobility in the wireless sensor
networks. MMAC utilizes a dynamic mobility-adaptive frame time to enhance TRAMA, a
scheduled-based protocol, with mobility prediction. Likewise, G-MAC utilizes TDMA for
cluster-based WSNs by combining the advantages of contention and contention-free MACs. All
of the above MAC protocols are reviewed in detail.

Reference

TDMA-Based MAC Protocol for Mobile
Sensor Networks 2009 Eighth International Conference
on Networks
protocols for wireless sensor networks. In:
Elsevier Ad hoc Networks Journal, vol. 3, no. 3;
control with coordinated adaptive
transactions on networking, vol. 12, no. 3; June
[4] Pham H, Jha S. Addressing mobility in wireless
sensor media access protocol. In:
Intelligent sensors, sensor networks and information
processing conference (ISSNIP 2004); December
Youn J. A mobility based link layer
approach for mobile wireless sensor networks. In: IEEE
international conference on
GJ, Srivastava MB. Controlled mobility
for sustainable wireless sensor networks. In: IEEE
conference on sensor and ad hoc
communications and networks (SECON 2004); October 2004. p1-6.
mobility-adaptive, collision-free MAC protocol
for wireless sensor networks. In: IEEE
international performance, computing, and
communications conference (IPCCC 2005); April
[8] Rajendra V, Obraczka K, Garcia-Luna-Aceves JJ. Energy-efficient, collision-free
medium access control for wireless sensor network. In: ACM international conference
[9] W. Ye, J. Heidemann, and D. Estrin, "Medium access control with coordinated,
adaptive sleeping for wireless sensor networks", ACM/IEEE Transactions on
802.11-1999", Wireless LAN Medium Access Control (MAC) and Physical Layer
networks(MS-MAC)", The 1st IEEE International Conference on Mobile Ad-hoc and
[12] L. van Hoesel and P. Havinga, "A lightweight medium access protocol (LMAC) for
wireless sensor networks: reducing preamble transmissions and transceiver state

Index Terms
Computer Science Networks

Key words
Mobility
Medium access control (MAC)
Energy Efficiency
Adaptive Frame Size