Abstract

Mobile Ad-hoc Networks (MANETs) are highly decentralized, independent and self-organizing networks. It is significant to study the cost of the network, to optimize the routing method by means of cross layer interaction across the layers of the network. In this paper, first we generate a minimum cost spanning tree for a given network of N- nodes using an efficient algorithm, Then we study the problem of constructing a K-node Multi cast Minimum Spanning Tree (KMMST) for any given multicasting group with K nodes, where K is less than n. Comparing the cost associated with the minimum spanning tree of the entire network with n nodes and the cost of KMMST, it is found that the cost of KMMST is significantly less compared to cost of the n nodes spanning tree.

Reference

- D. Pan and Y. Yang, “FIFO-Based Multicast Scheduling Algorithm for Virtual Output
- C. Perkins, E. Beldig-Royer and S. Das. Ad hoc on Demand Distance Vector (AODV)
- Z. Haas. A New Routing Protocol for Reconfigurable Wireless Networks.ICUPC 97,
- Z. Haas and M. Pearlman. The Performance of Query Control Schemes for the Zone
- Z. Haas and B. Liang. Ad hoc mobility management with randomized database groups.
- Y. Ko and N. Vaidya. Location-aided Routing (LAR) in Mobile Ad hoc Networks.
  Proceedings of the ACM/IEEE International Conference on Mobile Computing and Networking
- Alpr Jttner and dm Magi. Tree Based Broadcast in Ad hoc Networks. MONET Special
- Zeyad M. Alfawaer, GuiWei Hua, and Noraziah Ahmed, “A Novel Multicast Routing
  2007, ISSN 1546-9239, 2007 Science Publications.
- Penttinen, A et al, “Minimum cost multicast trees in ad hoc networks”, Communications,
- Blerta Bishaj, “Multicasting in ad hoc networks: Energy efficient”, Helsinki University of
  Technology.
- Chao Gui and Prasant Mohapatra,” Scalable Multicasting in Mobile Ad Hoc Networks”,
  Tolerant Multicast In Mobile Ad Hoc Networks Using Disjoint Minimum Spanning Trees", the
  second IEEE ICCSIT 2009, August 8 - 11, 2009, Beijing, China.

Index Terms

Computer Science
Networks

Key words

K-nodes multicasting cost
spanning tree
routing