Abstract

The dynamics of a multi machine power system are both nonlinear and interconnected. The equilibrium of such a system is typically unknown and uncertain, and the controllers within are also subject to physical limitations. In this paper, application of nonlinear H∞ robust power system stabilizer design is presented for a three machine system. Based on the latest development of nonlinear H∞ robust control theory, a control design is applied to stabilize the linearized uncertain system using Glover-McFarlane’s loop shaping design procedure for a three machine system. Guidance for setting the feedback configuration for loop shaping and synthesis are presented. The results of simulation studies are presented.

Reference

[3]. J.M. Maciejowski, Multivariable feedback design, Addison-Wesley publishing company
Jersey, 1996.
[6]. Control Theory: Multivariable and Nonlinear Methods, Tprkel Glad and Lennart Ljung, Taylor and Francis
[7]. Automatic control systems, Benzamin C.kuo, Printice-Hall of India, New Delhi, 2001
[13]. Dequiang Gan, Zhihu Qu and Hongzhu Cai, Multi machine power system excitation control design via theories of feedback linearization control and nonlinear robust control.
[14]. Chuanjiang Zhu, Member, IEEE, Mustafa Khammash, Senior Member, IEEE, Vijay Vittal, Fellow, IEEE, and Wenzheng Qiu, Student Member, IEEE, Robust Power System Stabilizer Design UsingLoop Shaping Approach, IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 18, NO. 2, MAY 2003
[15]. Jayapal.R and Dr.J.K.Mendiratta, Robust power system stabilizer design using H8 loop shaping approach for single machine system.

Index Terms

- Electrical
- Power Systems

Key words

- closed loop gain
- H8
- loop shaping
- linearized model
- multi machine
open loop gain
power system stabilizer
robust controller
state space