Abstract

This paper presents a current-fed full-bridge boost DC-AC-DC converter with transformer isolation operating without switching power dissipation. The output voltage is regulated by dc-ac converter whose frequency changes with a constant turn-off time of transistors. The proposed converter is devoid of parasitic oscillations, as all of the parasitic capacitances and inductances are included in a resonant tank circuit. The main advantage of such systems is that they include a capacitive output filter, which is preferred in higher voltage applications. Moreover, it achieves ZCS for all active switches and zero-voltage switching (ZVS) operation for all diodes on high voltage side, which is an additional benefit. In this paper, the system operation is first explained, then a mathematical description that is useful for its design is provided, and finally, a report on the implementation of a laboratory prototype with 125W power is presented.

Reference

Implementation of Full-Bridge Current-Fed Resonant Boost Converter using PIC microcontroller

- J.A.sabate, V.Vlatkovuc, R.B.Ridely, FC.Lee and B.L.Cho "design consideration for high voltage high power full bridge zero voltage switching PWM converters" in proc. Applied power electronics conf. and exposition (APEC '90) (1990)

Index Terms

Power Engineering Power Applications

Key words

Bridge

current fed

boost

Dc-Dc converter
ZVS

ZCS