Abstract

Ischemic Heart Disease (IHD) is difficult to diagnose since most of the symptoms and clinical presentations are similar to other diseases. It is a very common, harmful disease, which is identified mostly during the mortality of an individual. The objective is to build a clinical decision support system, which will diagnose the presence of IHD with an integrated automated classifier using Artificial Intelligence (AI) techniques. A retrospective data set that included 800 clinical cases was taken for the work. A total of 88 sets were discarded during pre-processing. Tests were run on 712 cases using the Weka classifiers available in Weka 3.7.0. Out of 113 classifiers, 16 were identified to be the best based on the following parameters: sensitivity, specificity, accuracy, F-measure, kappa statistic, correctly classified cases, time taken to run the model, and the Receiver Operating Characteristic (ROC) curve. The diagnoses made by the Clinical Decision Support System (CDSS) were compared with those made by physicians during patient consultations. The KSTAR algorithm showed the best diagnoses with the highest accuracy 97.32%, sensitivity 98%, specificity 97% kappa 0.95, and ROC 0.995. The authors thus conclude that a CDSS can be developed to assist expert physicians in separating the positive and the negative cases of heart disease.
References

  "Contribution of major cardiovascular risk factors to familial premature 
  coronary artery disease: the GENECARD project," J. Am. Coll. Cardiol., 2002, 40, 
  Full text available here: http://www.ics.uci.edu/~mlearn/MLRepository.html (Accessed 16th 
  July 2012).

  text available here: http://www.ics.uci.edu/~mlearn/MLRepository.html (Accessed 16th July 
  2012).

- International Society of Cardiology and the Joint Subject Group on standardization of 
  clinical naming in World Health Organization: Naming and diagnosis criteria of ischemic heart 

- S. Vamadevan. A. Prabhakaran, D. Prabhakaran, "Coronary heart disease in 
  561-566.

- K. S. Reddy, B. Shah, C. Varghese, A. Ramadoss, "Responding to the threat of chronic diseases in India," 

- R. Gupta, P. Joshi, V. Mohan, K. S. Reddy, S. Yusuf, "Epidemiology and 

- 7. S. Mendis, P. Puska, B. Norrving, "Global Atlas on Cardiovascular Disease 
  Prevention and Control," World Health Organization, 2011, Full text available here: 
  2012).

- E. A. Enas, "Clinical Implications: Dyslipidemia in the Asian Indian Population. 
  Dyslipidemia in the Asian Indian Population: Unique aspects and implications for 
  treatment," American Association of Physicians of Indian Origin, Oakbrook, 2002, Full text 
  available here: http://www.southasianheartcenter.org/docs/AAPImonograph.pdf (accessed 
  10th August 2012).

- S. O'Kelly, "Euroheart 2009," Heart Dis News, 2009, Full text available here: 

- European Society of Cardiology, "Obese adolescents have heart damage," 

- J. R. Quinlan, "Induction of decision trees," Machine Learning, 1986, 1, 
  81-106.


- 14. "India's Population 2012," 2012, Full text available here: 
  http://www.indiaonlinepages.com/population/india-current-population.html (accessed 26th July
Artificial Intelligence (AI) Techniques Applied for the Development of a Clinical Decision Support System (CDSS) for Diagnosing Ischemic Heart Disease (IHD)

2012).

- © 2011 by Maejo University, San Sai, Chiang Mai, 50290 Thailand. Reproduction is permitted for noncommercial purposes.

Index Terms

Computer Science

Artificial Intelligence
Keywords
Clinical Decision Support System (CDSS); Artificial Intelligence (AI) techniques; Ischemic Heart Disease (IHD); Sensitivity; Specificity; Accuracy; F-measure; Kappa statistic; Receiver Operating Characteristic (ROC).