Abstract

The autonomous wheeled mobile robots (AWMR) are subjected to high demands concerning stability, controllability and safety. Therefore, it becomes very important to devise the effective and efficient control strategies for such system to get desired system dynamic performance. In this paper the state space model of the system has been developed, the dynamic behavior of the system has been studied and then optimal controllers are designed using full state feedback control strategy. The optimal controllers are designed for various operating conditions using pole placement technique. The dynamic response plots are obtained for various system states considering various operating conditions. The investigations of these reveal that the implementation of optimal controllers offer not only good dynamic performance, also ensure system dynamic stability.

References

- KoheiWakita, Jian Huang, Pei Di, KosukeSekiyama, and Toshio
Fukuda, "Human-Walking Intention-Based Motion Control of an Omnidirectional-Type Cane Robot", IEEE/ASME Transactions on Mechatronics, vol. 18, no. 1, pp 285-297, February 2013

- Math Works, User's guide

- Enaiyat Ghan, I Ovy, Shakeel Seeraji, S. M. Firdous and Mohammad Rokonuzzaaman, "A Novel Design Of An Atmega 32 L Microcontroller Based Controller Circuit for The Motion Control Of Robot Arm Actuated by DC Motors.", Journal of selected areas in robotics (JSRC), pp 1-8, April 2011

- Umar Farooq, Muhammed Amar, Eitzazul Haq, Muhammed Usman Asad, Hafiz Muhammed Atiq, "Microcontroller based Neural Network..."
Eigen Value Analysis of Optimal Controller Design of Wheeled Autonomous Mobile Robot

Controlled Low Cost Autonomous Vehicle”, Second International Conference on Machine Learning and Computing, pp 96-100, IEEE-2010
- Donglin Wang, SandeepChandana, Renlun He, Jiuqiang Han, Xiangyu Zhu, KeZou and Yong He, "Intelligent Sensor Design in Network based Automatic Control”; Second International Conference on Machine Learning and Computing, IEEE-2010
- Jia-Sheng Hu, Mi-Ching Tsai, Feng-Rung Hu, and Yoichi Hori, "Robust Control For Coaxial Two-wheeled Electric vehicle”; Journal of Marine Science and Technology, Vol. 18, No. 2, pp. 172-180, 2010
- Lal Bahadur Prasad, Barjeev Tyagi and Hari Om Gupta, "Optimal Control of Nonlinear Inverted Pendulum Dynamical System with Disturbance Input using PID Controller & LQR”; 2011 IEEE International Conference on Control System, Computing and Engineering pp 540-546

Index Terms
Computer Science
Robotic Sciences
Keywords

Autonomous wheeled mobile robot (AWMR) Linear quadratic regulator (LQR)
Error weighting matrix Q
Control weighting matrix R