Abstract

In the present work, pattern synthesis of linear arrays using APSO is presented. APSO algorithm is employed for the synthesis of uniformly spaced arrays of two classes using unequal phases with equal amplitudes and with unequal amplitudes. The main objective of this work is to minimize the sidelobe level with a constraint on beam width and to perform null steering for isotopic linear antenna arrays by controlling different parameters of the array elements. The results are compared with the patterns of uniform linear array. The sidelobe level is reduced for amplitude-phase synthesis when compared with phase only synthesis as the number of elements are increased in an array. The patterns are numerically computed for different number of elements.

References

Synthesis of Linear Antenna Arrays using Accelerated Particle Swarm Optimization Algorithm

Synthesis of Linear Antenna Arrays using Accelerated Particle Swarm Optimization Algorithm

- M. Mouhamadou and P. Vaudon, 2006. "Smart antenna array patterns synthesis: null steering and multi user beamforming by phase control," Progress in Electromagnetics Research, Vol. 60, pp. 95-106.
- K. Guney and M. Onay, 2009. "Bees algorithm for interference suppression of linear antenna arrays by controlling the phase only and both the amplitude and phase," Expert systems with applications, Vol 37, pp. 3129-3135.

Index Terms

Computer Science
Algorithms

Keywords

Pattern synthesis
Sidelobe level
Beam width
Accelerated Particle Swarm Optimization.