Abstract

Given a multidimensional data set, a skyline query returns the interesting points that are not dominated by other points. The actual cardinality (s) of a skyline query result may vary substantially from the desired result cardinality (k). An approach called skyline ordering is used that forms a skyline based partitioning of a given data set, it provides an ordering among the partitions. The constrained skyline query results the skyline points that may be too small in some cases. The paper proposes a new method for finding the arbitrary number of points for the constrained skyline query. The skyline ordering algorithm and size constrained skyline ordering algorithm are used for developing the algorithm. The results of experiments of algorithm show that the proposed scheme yields an efficient and scalable resolution of arbitrary size constraints on constrained skyline queries. By comparing the existing and proposed system, the proposed system is efficient in returning the arbitrary number of skyline points.

References

An Algorithm for Retrieving Skyline Points based on User Specified Constraints using the Skyline Ordering

- P. Godfrey, R. Shipley, and J. Gryz, "Maximal Vector Computation in Large Data Sets," Proc. Int's Conf. Very Large Data Bases (VLDB), pp. 229-240, 2005.
- W. Jin, M. Ester, and J. Han, "Efficient Processing of Ranked Queries with Sweeping Selection," Proc. European Conf. Principles and Practice of Knowledge Discovery in Databases (PKDD), pp. 527-535, 2005.
- W. Jin, J. Han, and M. Ester, "Mining Thick Skylines over Large Databases," Proc. European Conf. Principles and Practice of Knowledge Discovery in Databases (PKDD), pp. 255-266, 2004.
- H. T. Kung, F. Luccio, and F. P. Preparata, "On Finding the Maxima of a Set of

Index Terms

Computer Science Algorithms

Keywords
Constrained Skyline Query Skyline Queries Skyline Order