Line Graphs and Quasi-Total Graphs

Abstract

The line graph, 1-quasitotal graph and 2-quasitotal graph are well-known. It is proved that if G is a graph consist of exactly m connected components G_i, $1 \leq i \leq m$, then $L(G) = L(G_1) \oplus L(G_2) \oplus \ldots \oplus L(G_m)$ where $L(G)$ denotes the line graph of G, and \oplus denotes the ring sum operation on graphs. The number of connected components in G is equal to the number of connected components in $L(G)$ and also if G is a cycle of length n, then $L(G)$ is also a cycle of length n. The concept of 1-quasitotal graph is introduced and obtained that $Q_1(G) = G \oplus L(G)$ where $Q_1(G)$ denotes 1-quasitotal graph of a given graph G. It is also proved that for a 2-quasitotal graph of G, the two conditions (i) $|E(G)| = 1$; and (ii) $Q_2(G)$ contains unique triangle are equivalent.

References

- Narsing Deo "Graph Theory with Applications to Engineering and Computer Science", Prentice Hall of India Pvt. Ltd, New Delhi (1997).
- Satyanarayana Bh., Srinivasulu D., and Syam Prasad K. "Some Results on Degree of Vertices in Semitotal Block Graph and Total – Block Graph", International Journal of Computer Applications (0975 - 8887) Vol. 50, No. 9, (July 2012) 19-22.

Index Terms

- Computer Science
- Applied Mathematics

Keywords

- Line graph
- Quasi total graph
- Connected component.