Abstract

In this paper, Investigation of Q-Factor & Eye diagram in different transmitter and receiver module are shown. For this, 10Gbps optical communication system with fixed bit pattern of 16 bit sequence for iterations are used. For the analysis purpose return to zero (RZ) and non return to zero (NRZ) coding are taken. Here Q-Factor is improved by changing encoding techniques at two different wavelengths of 1310nm & 1550nm.

References

- Wolfgang Freude, René Schmogrow, Bernd Nebendah, Marcus Winter, Arne Josten, David Hillerkuss, Swen Koenig, Joachim Meyer, Michael Dreschmann, Michael Huebner,
Christian Koos, Juergen Becker, Juerg Leuthold, “Quality Metrics for Optical Signals: Eye
Diagram, Q-factor, OSNR, EVM and BER”.
- Stamatios V. Kartalopoulos, “Factors affecting the signal quality in optical data
 transmission and estimation method for BER and SNR”.
 Error Rate Optimization in Fiber Optic Communications”, International Journal of Machine
 Learning and Computing, Vol. 1, No. 5, December 2011
- Hayee & Wilner, “NRZ versus RZ in 10-40 Gbps dispersion managed WDM
 transmission systems”.
- Practical Bit Error Rate Measurements on Fibre Optic Communications Links in Student
 2012).
- Oleg V. Sinkin, Vladimir S. Grigoryan, and Curtis R. Menyuk, “Accurate
 Probabilistic Treatment of Bit-Pattern-Dependent Nonlinear Distortions in BER Calculations for
 WDM RZ Systems”.
- Optimization of All-Optical Network Testbed Regarding NRZ and RZ Modulation,
 http://ieeexplore.ieee.org/Xplore/dfeDeny.jsp
- B. Akca, “Electro-optic and electro-absorption characterization of In As quantum
 dot waveguides”, 2008, 3439, PP 16
- Optisystem design, Optiwave Corporation 7 Capella Court Ottawa, Ontario, Canada.

Index Terms
Computer Science
Communications

Keywords
Quality factor Eye diagram NRZ RZ MZM EAM PIN APD.