Abstract

In recent years, cloud computing has been applied increasingly and most of the companies, have considered some kinds of cloud strategies to use in their organizations. Growing request for services causes overload on a single cloud. Cloud federation is an ideal solution to overcome continuous increasing requests by users. Identity management and access control are from challenging subjects of cloud federation which for has been offered approaches like identity federation, although it is not an optimum approach. There is needed a more effective, accurate and safe approach. This paper offered an approach to access control based on risk and trust parameters, depending on learning automata in cloud federation. Results of simulation shows that proposed approach prevents access of unauthorized user to the resources of federation by decreasing primary trust for novice user also by increasing risk for high sensitive resources.
- R. I. L. S. Foster I., Yong Zhao, "Cloud computing and grid computing 360-degree compared",

- Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H. Katz, Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. 2010,

- Yisheng Wang, Haopeng Chen, "Dynamic resource arrangement in cloud federation",
 The 2012 IEEE Asia-Pacific Services Computing Conference (APSCC 2012),

 The Second International Conference on Cloud Computing, GRIDs, and Virtualization, September 2011, pp. 32-38.

- Abdul Raouf Khan, "Access control in cloud computing enviroment",
 Department of Computer Sciences, King Faisal University, Saudi Arabia, MAY 2012.

- B. Holmer, S. Rubby, "Federated identity management in interCloud",
 Der Technischen Universita¨ tmu¨ nchen, 2013, pp. 3-9.

- Antonio Celesti, Francesco Tusa, Massimo Villari and Antonio Puliafito, "Three-Phase Cross-Cloud Federation Model: The Cloud SSO Authentication",
 Dept. of Mathematics, Faculty of Engineering, University of Messina Contra di Dio, S. Agata, 98166 Messina, Italy. 2010.

 Institute of Information Technology, Shanghai Ocean University, Shanghai, China, 2009, 4-12, pp. 69-89.

- Bassam Farroha, Deborah Farroha, "Challenges of Operationalizing Static System Access Control: Transitioning from ABAC to RADAC",
 Bassam Farroha, Deborah Farroha, 2011.

- Daniel Ricardo dos Santos, Carla Merkle Westphall, "Risk-based dynamic access control for a highly scalable cloud federation",
 Carlos Becker Westphall Networks and Management Laboratory Federal University of Santa Catarina Florianópolis, Brazil, 2013, 40-63.

- R. McGraw, "Risk-adaptable access control RADAC, in: Privilege (Access) Management Workshop,
 NIST—National Institute of Standards and Technology—Information Technology Laboratory, 2009.

- L. Zhang, A. Brodsky, S. Jajodia, "Toward information sharing: Benefit and risk access control BARAC",

- Q. Ni, E. Bertino, J. Lobo, "Risk-based access control systems built on fuzzy inferences",
 in: Proceedings of the 5th ACM Symposium on Information, Computer and

- Kevin Kelly, "Role-Based Access Control Model," 1998, pp. 50-93.

Index Terms

Computer Science
Distributed Systems

Keywords

Cloud Computation
Access Control
Cloud Federation
Learning Automata.