Abstract

Reversible logic is one of the promising research areas in low power applications such as quantum computing, optical information processing and low power CMOS design. In this paper we present a reversible carry look ahead adder and an array multiplier. The circuits are designed such that they result in less garbage outputs, constant inputs, and less gate count compared to previous existing designs. We also gain better improvements in terms of power and area when compared to conventional adders and multipliers. The implemented designs are simulated using NC launch and synthesized by RTL compiler.
References

 - Ko-ChiKuon, Chi-Wen Chou Low power and high speed multiplier design with row by passing and parallel architecture, Microelectronics Journal 41 (2010).
- J. W. Bruce, M. A. Thornton, L. Shivakumaraiah, P. S. Kokate, and X. Li. Efficient Adder Circuits Based on a Conservative Reversible Logic Gate.

Index Terms

Computer Science
Circuits And Systems
Keywords

Reversible Garbage constant Garbage output.