Abstract

Machine learning techniques are used in different types of pattern recognition works. Nowadays, these techniques are applied in meteorological fields for prediction purpose. In this paper, the pattern to be recognized is the severe weather event of squall-thunderstorms. Prediction of severe thunderstorms are done here by applying K-Nearest Neighbor (K-NN) technique. K-NN is a very good classifier which can classify two classes of events ‘storm days’ and ‘no storm days’. It is a non-parametric method. Three types of weather parameters such as moisture difference, dry adiabatic lapse rate and vertical wind shear are considered here as predictors. Both surface as well as upper air data which are measured by radiosonde/ rawinsonde in the early morning are used in this case. Weather forecasting is a challenging job because of the dynamic behavior of the atmosphere. ‘Storm days’ are predicted correctly more than 91% and both ‘storm and no storm days’ are classified more than 82% accuracy, having a lead time around 12 hours.
computing models to hourly weather analysis in southern Saskatchewan, Canada"; 2005, Engineering Applications of Artificial Intelligence, Vol. 18, Issue 1, pp. 115-125.
- Jayawardena, A. W. , Fernando D. A. K. and Zhou M. C. , 1997, "Comparison of Multilayer Perceptron and Radial Basis Function networks as tools for flood forecasting"; Proceedings of the Conference Water-Caused Natural Disasters, their Abatement and Control, held at Anaheim, California, Publ. no. 239.
- Zahoor Jan,Abrar Muhammad, Bashir Shariq and Mirza Anwar M. , 2008, "Seasonal to Inter-Annual Climate Prediction Using Data Mining KNN Techniques"; Communications and Computer and Information Science, Vol. 20, ISSN: 1865-0929, PP. 40-51.
- Kristen L. Corbosiero and Molinari John "The Relationship between Storm Motion,

Index Terms

Computer Science
Pattern Recognition

Keywords

Squall-thunderstorm
Machine Learning
K-Nearest Neighbor and Similarity Measure