Histogram Equalization Tool: Brightness Preservation and Contrast Enhancement using Segmentation with Opening-by-Reconstruction

Abstract

Sundry improvement plans are used for improving a picture which incorporates ash scale control, sifting and Histogram Equalization (HE). The issue with pictures is that, their quality depends upon a number of different variables like lighting in the picture catching area, commotion and capability of the administrator. The writing addresses the verbalized issue widely and presents answers for them. Contrast improvement systems are used for correcting visual nature of low difference pictures. Histogram Equalization (HE) is one such procedure used for difference upgrade. The proposed illustrations have a few shared traits in their procedures. Approximately every one of them is at fluctuation either in histogram leveling strategies or in picture quality estimation instruments. An instrument is lost in the writing that is proficient to improve the picture and even perform the examination. In this paper, a GUI apparatus is composed which is coupled with different procedures of picture improvement through histogram balance. Opening-by-recreation is a standout amongst the most effective picture division strategy is used to attain to the craved results. To assess the adequacy of the delineated systems; PSNR, Tenengrad, and Absolute Mean Brightness mistake (AMBE) are used as parameters. The results are decently backed by the parameter estimations toward the end.

References

- Y. Wang, Q. Chen and B. Zhang, "Image Enhancement Based on Equal Area
 Dualistic Sub-Image Histogram Equalization Method," IEEE Transactions on
- S. D. Chen and A. R. Ramli, "Minimum Mean Brightness Error Bi-Histogram
 Equalization in Contrast Enhancement," IEEE Transactions on Consumer
- S. D. Chen and A. R. Ramli, "Preserving brightness in histogram equalization
 based contrast enhancement techniques," Digital Signal Processing, vol. 14,
- S. D. Chen, "A new image quality measure for assessment of histogram
 equalization-based contrast enhancement technique," Digital Signal
- N. Sengee, A. Sengee and H. K. Choi, "Image Contrast Enhancement using
 Bi-Histogram Equalization with Neighborhood Metrics," IEEE Transactions on
 Consumer Electronics, vol. 56, no. 4, November 2010, pp. 2727-2734.
- A. Zuo, Q. Chen and X. Sui, "Range Limited Bi-Histogram Equalization for
- K. Wongsritong, K. Kittayaruasiriwat, F. Cheevasuvit, K. Deihan and A.
 Somboonkaew, "Contrast Enhancement using Multi-peak Histogram Equalization
 with Brightness Preserving," IEEE Asia-Pacific Conference on Circuits and
- S. D. Chen and A. R. Ramli, "Contrast Enhancement using Recursive
 Mean-Separate Histogram Equalization for Scalable Brightness Preservation," IEEE
 1301-1309.
- K. S. Sim, C. P. Tso and Y. Y. Tan, "Recursive sub-image histogram
- M. A. A. Wadud, M. H. Kabir, M. A. A. Dewan and O. Chae, "A Dynamic
 Histogram Equalization for Image Contrast Enhancement," IEEE
 593-600.
- H. Ibrahim and N. S. Pik Kong, "Brightness Preserving Dynamic Histogram
 Equalization for Image Contrast Enhancement," IEEE Transactions on Consumer
- A. Menotti, L. Najman, J. Facon and A. D. A. Araujo, "Multi-Histogram
 Equalization Methods for Contrast Enhancement and Brightness Preserving," IEEE
 1186-1194.
- N. Sengee and H. K. Choi, "Brightness preserving weight clustering histogram
- M. A. A. Wadud, M. H. Kabir and O. Chae, "A Spatially Controlled Histogram
 and Information Sciences, ISCIS '08, 2008.
- A. Sheet, H. Garud, A. Suveer, M. Mahadevappa and J. Chatterjee, "Brightness
 Preserving Dynamic Fuzzy Histogram Equalization," IEEE Transactions on Consumer
- M. Khan, E. Khan, and Z. A. Abbasi, "Weighted average multi segment
 histogram equalization for brightness preserving contrast enhancement," IEEE

Index Terms

Computer Science
Image Processing
Keywords
Contrast Enhancement Brightness Preservation Foreground Enhancement
Histogram Equalization

Quality Measures
Cumulative Density Function.