Abstract

In this paper, a seven level asymmetrical cascaded H-Bridge multilevel inverter in three phase configuration using different level-shifted carrier-based pulse width modulation techniques is discussed. Multilevel inverters have become more popular due to high voltage and high power output applications. Comparable to traditional PWM inverters, multilevel inverters are able to reduced switching losses, low harmonic distortion and high-voltage capability with low costs. This paper presents ACMLI using fixed frequency level-shifted carrier-based PWM technique for three phase squirrel cage induction motor as a load. In this topology, two H-Bridges with 8-IGBT switches are used for getting seven level output voltage for each phase leg. Simulation using MATLAB-SIMULINK is done to verify the performance of the ACMLI using LSCPWM techniques. Simulation results for this proposed scheme are shown in this paper.

References

- Sangshin Kwak, Student Member, IEEE, and Hamid A. Toliyat, Senior Member, IEEE,
Analysis of THD and Output Voltage for Seven Level Asymmetrical Cascaded H-Bridge Multilevel Inverter

“Multilevel Current Source Inverter Topology Based on Dual Structure Associations”

- Feel-Soon Kang, Member, IEEE, Sung-Jun Park, Member, IEEE, Man Hyung Lee, Senior Member, IEEE, and Cheul-U Kim, Member, IEEE, “An efficient multilevel-synthesis approach and its application to a 27-Level inverter,” IEEE transactions on industrial electronics, vol. 52, no. 6, December 2005.

- Zahra Bayat Department of Electrical Engineering, Ahar Branch Islamic Azad University, Ahar, Iran and Ebrahim Babaei, Member, IEEE Faculty of Electrical and Computer Engineering University of Tabriz, Tabriz, Iran, “A New Cascaded Multilevel Inverter with Reduced Number of Switches,” IEEE Catalog Number: CFP1211J-ART ISBN, 2012 IEEE.

Index Terms

- Computer Science
- Circuits And Systems

Keywords

- Level shifted carrier-based PWM techniques (LSCPWM)
- MATLAB SIMULINK
- Total Harmonic Distortion (THD).