Abstract

Content Based Video Retrieval (CBVR) has been increasingly used to describe the process of retrieving desired videos from a large collection on the basis of features that are extracted from the videos. The extracted features are used to index, classify and retrieve desired and relevant videos while filtering out undesired ones. Videos can be represented by their audio, texts, faces and objects in their frames. An individual video possesses unique motion features, color histograms, motion histograms, text features, audio features, features extracted from faces and objects existing in its frames. Videos containing useful information and occupying significant space in the databases are under-utilized unless CBVR systems capable of retrieving desired videos by sharply selecting relevant while filtering out undesired videos exist. Results have shown performance improvement (higher precision and recall values) when features suitable to particular types of videos are utilized wisely. Various combinations of these features can also be used to achieve desired performance. In this paper a complex and wide area of CBVR and CBVR systems has been presented in a comprehensive and simple way. Processes at different stages in CBVR systems are described in a systematic way. Types of features, their combinations and their utilization methods, techniques and algorithms are also shown. Various querying methods, some of the features like GLCM, Gabor Magnitude, algorithm to obtain similarity like Kullback-Leibler distance method and Relevance Feedback Method are
discussed.

References

- C. V. Jawahar, Balakrishna Chennupati, Balamanohar Paluri, Nataraj Jammalamadaka, "Video Retrieval Based on Textual Queries", Proceedings of the Thirteenth International Conference on Advanced Computing and Communications, Coimbatore, Citeseer, 2005
features, speech features and frequent patterns for semantic video annotation. "IEEE Transactions on Multimedia, 10(1), 2008
Content based Video Retrieval Systems - Methods, Techniques, Trends and Challenges

- Aljahdali, S.; Ansari, A.; Hundewale, N., "Classification of image database using
- Y. Peng, C. Ngo, Clip-based similarity measure for hierarchical video

- www.wikipedia.org
- Steven W. Zucker, Demetri Terzopoulos. "Finding Structure in Co-Occurrence Matrices for Texture Analysis;", computer graphics and image processing 12, 286 - 308, 1980.

Index Terms

Computer Science Communications
Keywords

CBVR GLCM Gabor Magnitude Kullback-Leibler Distance Method Relevance Feedback Method.