Abstract

This paper describes the organizational modeling of the Ant Colony Optimization (ACO). It presents a modeling approach of the ACO based on Holonic Multi-Agent paradigm named HMAS (Holonic Multi-Agent Systems). The approach of modeling used is organizational and it uses four basic concepts: Capacity, Role, Interaction and Organization (CRIO). The Traditional modeling techniques fail to capture interactions between loosely coupled aspects of a complex system. However, the organizational model of the ACO has highlighted the different roles that can occur in such optimization device. The solving approach highlights two fundamental concepts from behavioral intensification and diversification. Since, it is difficult to distinguish an intensification from a diversification behavior, though these two trends are identifiable in the organizational model of the proposed ACO, a single role can combine the roles Intensify and Diversify. So, a Manager role is identified and is responsible for the coordination of research by the colonies, and the management of the pheromone memory.
- B. Bullnheimer, R. F. Hartl, and C. Strauss. An improved ant system algorithm for the
- B. Bullnheimer, R. F. Hartl, and C. Strauss. Applying the ant systems to the vehicle
- Y. Chevaleyre. Le probleme multi-agents de la patrouille. In Annales du LAMSADE,
- A. Coloni, M. Dorigo, and V. Maniezzo. Distributed Optimization by ant colonies. In
- Meignan David. Une approche organisationnelle et multiagent pour la modelisation et
 l’implantation de metaheuristiques: Application aux problemes d’optimisation de
- M. Dorigo and L. M. Gambardella. Ant colony system: a cooperative learning
- M. Dorigo, V. Maniezzo, and A. Colorni. The Ant System: Optimization by a colony of
 cooperating agents. In IEEE Transactions on Systems, Man, and Cybernetics (Vol. 26, no. 1),
 pages 1–13, 1996.
- A. Drogoul. Intelligence (Traite des Sciences cognitives), chapter Les
- J. Ferber. Les Systemes Multi-Agents: vers une intelligence collective. In iia,
- J. Ferber and O. Gutknecht. A meta-model for the analysis and design of
 organizations in multi-agent systems. In Third International Conference on Multi-Agent
- J. Ferber, O. Gutknecht, and F. Michel. From agents to organizations: an
 organizational view of multi-agent systems. In Agent-Oriented Software Engineering IV
 4th International Workshop, Melbourne, Australia, Springer Verlag, Vol. 2935 of LNCS,
 Networks: Application to Fire Detection. In International Journal of Applied Information
- A. Nicolas Gaud. Systemes Multi-Agents Holoniques : De analyse a
- Dreo Johann. Adaptation de la methode des colonies de fourmis pour
 optimisation en variables continues. Application en genie biomedical. PhD thesis,
 LERISS, 2005.
- F. Lauri and F. Charpillet. Ant Colony Optimization applied to the Multi-Agent
- F. Lauri and A. Koukam. A Two-Step Evolutionary and ACO Approach for Solving the
 Multi-Agent Patrolling Problem. In WCCI, Hong-Kong, China, 2008.

Index Terms

Computer Science

Information Science

Keywords

Ant agent colony metaheuristic multi-agent organization role sensor