Abstract

The present paper deals with a decoupled multimodel predictive control based on multi-observer for the control of discrete-time nonlinear systems with time-varying delay. For each local model, a controller based on partial predictor/observer is synthesized. A switching algorithm is established to yield the adequate partial controller ensuring the closed-loop desired performances. Simulation results are given to illustrate the significance of the proposed decoupled multimodel predictive control strategy.

References


- Y. Batmani and H. Khaloozadeh. "on the design of observer for nonlinear
Supervised Model Predictive Control for Discrete-time Nonlinear Systems with Time-varying Delay


- O. Pags, C. Bernard, O. Raul, and M. Pascal. "control system design by using
a multi-controller approach with a real-time experimentation for a robot wrist. 
- R. Orjuela, D. Maquin, and J. Ragot. "nonlinear system identification using 
uncoupled state multiple-model approach." In 4th Workshop on Advanced Control and 
Diagnosis, ACD 20-06, Nancy, France, 2006.
- A. Savran. "discrete state space modeling and control of nonlinear unknown 

Index Terms

Computer Science Information Sciences

Keywords

Predictive Control Time-delay Systems Multi-observer Supervisor Multimodel Approach