Abstract

This Research paper focused on Classification accuracy based on Users' Preferences from the Web Learning System. This comparative study considers various classification algorithms like j48, Random Tree, Random Forest, CART and Naive Bayes in the Web Learning System. It also focuses on Artificial Neural Network (ANN) algorithms. The classification accuracy is identified by user's requirements based on the cognitive input. In this research Neural Network approach like MLP, PMLP, GO PMLP and PSO PMLP algorithms are proposed and validated. These algorithms classify the user preferences of the Web Learning System. As the User Preferences have many potential applications, mining on the User Preferences of the Web Learning System users was contemplated. Based on the response of the current users, a decision tree induction algorithm is used to predict the requirements of future users.
- Abdullah H. Wahbeh, Qasem A. Al-Radaideh, Mohammed N. Al-Kabi, Emad M. Al-Shawkafka, "A Comparison Study between Data Mining Tools over some Classification Methods", International Journal of Advanced Computer Science and Applications, Special Issue on Artificial Intelligence, pp. 18-26, 2011.
- Hong jun Lu, Rudy Setiono, Huan Liu, "Effective Data Mining Using Neural Networks", IEEE transactions on knowledge and data engineering, Volume 8, Number 6, pp. 957-961, 1996.
- D. Montana, "Introduction to the Special Issue: Evolutionary Algorithms for Scheduling", Evolutionary Computation, Volume 6, Number 1, 1998.
- Qinghai Bai, "Analysis of Particle Swarm Optimization Algorithm", Computer Science and Informatics, Volume 3, Issue 1, pp 180-184, 2010.
- Maria-Iuliana DASCALU, "Application of Particle Swarm Optimization to Formative E-Assessment in Project Management", Informatica Economica, volume 15, Number 1, pp 48-59, 2011.

Index Terms

Computer Science
Web Service

Keywords

Online Learning
User Interface Design
User Preferences Artificial Neural Network
Artificial Neural Network
PMLP.