Abstract

In this paper we have analyzed and simulated Frequency Division Spectrum Sensing (FDSS) in Cognitive Radio Network (CRN) for Nakagami fading channel. The simulation results shows that for different values of Nakagami Parameters (m) the performance of the FDSS is different. As the value of Nakagami parameter (m) increases probability of false alarm decreases, probability of detection increases and secondary user's throughput also increases. The simulation results show that for the optimum spectrum sensing bandwidth (Ws) 0.5 MHz, the false alarm probability decreases by 49.6% and 96.6% for m=2 and m=5 respectively as compare to m=1, the probability of detection increases by 6% and 17.7% for m=2 and m=5 respectively as compare to m=1, the secondary user throughput increases by 14% and 29.1% for m=2 and m=5 respectively as compare to m=1.

References

Analysis of Frequency Division Spectrum Sensing in Cognitive Radio Network for Nakagami Fading Channel

12, No. 1, 2013, pp. 40-49.
- Ezio Biglieri, John Proakis, Shlomo Shamai, "Fading channel: Information-
Theoretic and communication aspects" IEEE Transaction on Information Theory, Vol. 44,
No. 6, 1998, pp. 2619-2692.
- Bernard Sklar, 'Rayleigh fading channels in mobile digital communicationsystem
Part-I: Characterizatio' July 1997, pp. 90-100.
- Norman C. Beaulieu, Christine Cheng, "Efficient Nakagami-m Fading Channel
Simulation", Vol. 54, No. 2, March 2005, IEEE Transaction on Vehicular Technology,

Index Terms

Computer Science Communication

Keywords

Cognitive radio spectrum sensing framework Nakagami fading channel