Abstract

Computational Grid (CG) is a wide network of computational resources that provides a distributed platform for high end compute intensive applications. The resources in the computational grid are usually heterogeneous and being a highly heterogeneous system, Computational Grid poses a number of constraints. It is difficult to allocate and schedule the applications properly to achieve the benefit of the grid resources from the applications point of view, as the resources are heterogeneous and dynamic in nature. There are no common scheduling strategies that fulfill all the needs with respect to both, user and the system. The available scheduling implementations consider specific characteristics of the available resources and the application. The complexity of application, user requirements and system heterogeneity prevents any scheduling procedure in achieving its best performance. The aim of a grid scheduling algorithm is to find an appropriate set of resources and maintain its user-demanded Quality of Service (QoS) requirements. Scheduling in CG is an NP-hard problem which requires an efficient solution. The problem, considered in this work, is task scheduling in Computational Grid (CG). Task scheduling in CG is a complex problem as many QoS parameters and system constraints are involved. This paper deliberates over the problem
A Review on Resource Scheduling Models to Optimize Quality of Service Parameters in Grid Computing using Meta-heuristics and various tools used in order to solve this problem.

References

- Q. Niu, F. Zhou and T. Zhou, "Quantum Genetic Algorithm for Hybrid Flow Shop
- C. Kumar, S. Prakash, T. Kumar and D. P. Sahu, "Variant of genetic algorithm

Index Terms

Computer Science

Information Science

Keywords

Scheduling Computational Grid QoS Parameters Meta-heuristics