Abstract

An Efficient Median Filter (EMF) algorithm for removal or enhancement of gray scale images are highly corrupted impulse noise is proposed in this paper. Noise in image are represent the pixel value 0's and 255's are ensures that black and white dot in image. In proposed algorithm take an image and select 3x3 size window and target or center pixel value check if its value is 0's or 255's then image is corrupted otherwise noise free image. If image is noisy and target pixels neighboring pixel value is between 0's and 255's then we replace pixel value with the median value and if target pixels neighboring pixel value is 0's or 255's then we replace pixel value with the mean value. Else increased the window size and again repeat this process until image is denoised. The proposed filter algorithm shows better simulation result as compare the existing algorithms. The simulation result shows better and efficient performance of PSNR and MSE and computation time.

References

- Review of Impulse Noise Reduction Techniques Manohar Annappa Koli Research Scholar, Department of Computer Science Tumkur university.
- Kaveri A. P. and K. J. Amrutkar, "Median filtering frameworks and their application
to image enhancement,” IJAIEM, volume 3, issue 3, March 2014.
- Fast restoration of natural images corrupted by high-density impulse noise,” Hosseini and Marvasti EURASIP Journal on Image and Video Processing 2013, 2013:15 content/2013/1/15
- Dodda Shekar, Rangu Srikanth, "Removal of high density salt & pepper noise in noisy images using Decision Based Unsymmetric Trimmed Median Filter,” IJCTT-vol. 2, issel-2011.
- Removal of high density salt and pepper noise in noisy image using Decision based unsymmetric trimmed median filter (DBUTMF) DoddaShekar#1, Rangu Srikanth*2#1 M. Tech in VLSI EngineeringJayamukhi Institute of Technology and Science Narsampet, Warangal, AP, India.
- An enhanced non linear Adaptive filtering technique for removing high density salt

Index Terms

Computer Science
Image Processing

Keywords

Impulse Noise Digital Image Median Filter PSNR and MSE.