Abstract

Process mining techniques have usual notable attention within the literature for their ability to help within the redesign of complex processes by mechanically discovering models that specify the events registered in some log traces provided as input. Process mining refers to the extraction of process models from event logs. Now real-life processes tend to be less structured and a lot of flexible. Traditional process mining algorithms have issues dealing with such unstructured processes and generate "spaghetti-like"; process models that are exhausting to understand. An approach to beat this is often to cluster process instances specified every of the ensuing clusters correspond to coherent sets of process instances which will every be adequately represented by a process model. To overcome these issues projected system aims to produce associate automatic means for code engineers to get mined models from systematic event logs specification embrace drawback finding, operating to learn others and technical challenge. This technique at first converts the Systematic Event Logs into some intermediate type like translated tokenized log file and keyword filtered log file. Then this filtered log file format is analyzed to extract the knowledge like Similarity matrix, Frequency count, Most read/write information, database queries and these event logs data measure accustomed build the clusters. Any system would generates the clusters using ActiTraC algorithm to produce refined description of generated models therefore incorrectness and additional overhead in
analysis part of model development is removed to extended extent. This is supported on an
repetitious, graded, refinement of the process model, where, at every step, traces sharing
similar behavior patterns are clustered along and equipped with a specialized schema. The
formula guarantees that every refinement results in an progressively sound model, so attaining
a monotonic search.

References

- Joachim Herbst: "An Inductive Approach to the Acquisition and Adaptation of
 Workflow Models" (1999).
- B. F. van Dongen and W. M. P. van der Aalst, Instance graphs: "Multi-phase
- Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos and Prabhakar Raghavan,
 Hierarchical clustering: "Automatic Subspace Clustering of High Dimensional Data" (2005).
- K. A. de Medeiros, A. J. M. M. Weijters, and W. M. P. van der Aalst, Genetic
- Ferreira et al, Sequence Clustering: "Techniques for Process Mining Sequence
 clustering" (2007).
- Goedertier et al, Negative events: "Declarative Techniques for Modeling and
 Mining Business Processes" (2008).
- R. P. Jagadeesh Chandra Bose (JC): "Abstractions in Process Mining: A
 Taxonomy of Patterns" (2009).
- Philip Weber, Behzad Bordbar, and Peter Tiño: "A Framework for the Analysis of
 Process Mining Algorithms" (2013).
- Can Wang, Xiangjun Dong, Fei Zhou, Longbing Cao: "Coupled Attribute Similarity
 Learning on Categorical Data" (2014).
- Jianmin Wang, Raymond K. Wong, Jianwei Ding, Qinlong Guo, and Lijie Wen:
- Yongkweon Jeon and Sungroh Yoon: "Multi-Threaded Hierarchical Clustering by
 Parallel Nearest-Neighbor Chaining" (2013).
- Wil van der Aalst, Senior Member, "Service Mining: Using Process Mining to
 Discover, Check, and Improve Service Behavior" (2013).
- W. M. P. van der Aalst, Process Mining - Discovery, Conformance and Enhancement of
- W. M. P. van der Aalst, A. J. M. M. Weijters, and L. Maruster: "Workflow Mining:
- R. P. Jagadeesh Chandra Bose and W. M. P. van der Aalst: "Context Aware
 Trace Clustering: Towards Improving Process Mining Results" (2009).
- G. Greco, A. Guzzo, L. Pontieri, and D. Sacca: "Discovering Expressive

Index Terms

Computer Science

Information Sciences

Keywords

Process mining event log process discovery trace clustering process model data mining.