Abstract

Graphical-user interface (GUI) -based software applications are with the job of verifying that these tasks can be performed using the software; and that the software does not "behave badly". A set of use cases with high-level descriptions is also given to the testers. The tester executes these high-level steps by using GUI widgets on which events can be performed. GUI testers are both automated and manual working with undetermined input spaces. The testers unknowingly miss the event sequences navigated by the GUI, and fail to realize its implementation which may allow the execution of some disallowed sequences. This thesis proposes Preemptive Regression Testing (PRT) an adaptive taxing move to address this challenge. Whenever a change in the exposure of any service artifact is detected, PRT recursively preempts the current setting of regression test and creates a sub-session of the current test session to assure lately identified changes in coverage by adjusting the precedence of the test cases in the test suite. Then, the execution will resume the sub session from the balanced location of the test cases. PRT terminates only when each test case in the test suite has been executed at least once without any preemption activated in between any test case executions. The new result confirms that testing water flow method based web service in the phase of such changes is very difficult and one of the PRT-enriched techniques will overcome the challenge.
References

An Observed Model Approach for Testing GUI Model Driven Interface in Water-Flow Model

2011.

Index Terms

Computer Science
Software Engineering

Keywords

PRT Technique APFD BPEL WSDL XML.