Abstract

Large mission critical real-time legacy OLTP systems supporting the service sectors like banking, telecom, and financial services are monolithic in nature and thereby not flexible to enable business transformation which is the need of the hour due to emerging dynamic changes to business ecosystem. Broadly speaking, these large mission critical applications can be classified into three stages of activities: pre-processing, core business processing and post processing activities. This paper focuses on making the Business processing activities tier lean and efficient. By leveraging recent advances in technologies, a methodology is described by which the OLTP applications can be successfully transformed into agile systems. The methodology enables a view of the Business Tier in five dimensions. The first dimension is identifying the business’s core critical path and how to make it lean. The second dimension is how to enhance concurrency of the activities in the critical path. The third dimension is to improve the parallelism in execution of concurrency. The fourth is to separate I/O operations off the critical path. The fifth being how to minimize contentions for shared resources to ensure higher efficiencies. The paper also presents, the results of the experiments carried out by applying the above recommendation and the performance improvements to
Lean and Efficient Business Tier for Performance Scaling

decide the optimal setup for an environment for given workload. Addressing the five
dimensions of Business Tier, this paper demonstrates the transformation that can be achieved
which will enable the business to be agile and respond to market ecosystem demands in a very
efficient and effective manner.

References

- L. Wu, H. Sahraoui, and P. Valtchev, "Coping with legacy system migration
 complexity," in Proceedings of the 10th IEEE International Conference on Engineering of
- IBM, Building Multi-Tier Scenarios for Web Sphere Enterprise Applications, I. Redbook,
- C. Michiels, M. Snoeck, W. Lemahieu, F. Goethals, and G. Dedene, A Layered
 Architecture Sustaining Model Driven and even driven software development, Springer, Ed. 5th
 International Andrei Ershov Memorial Conference, PSI 2003, July. 2003, pp. 58-65, vol. 34,
 no. 4.
- H. R. Simpson, "Layered architecture(s): Principles and practice in concurrent and
- R. Choy and A. Edelman, "Parallel mat lab: Doing it right," in Proceedings of
 the IEEE (Volume: 93, Issue: 2), 2005.
- IBM, "Building multi-tier scenarios for web sphere enterprise applications," IBM Redbook,
- Shripad Agashe, "Predictive analysis using critical path method & Amdahl's
- S. Kleiman, D. Shah, and B. Smaalder, Programming with threads. Prentice Hall,
 1996.
- F. R. Johnson, R. Stoica, A. Allamaee, and T. C. Mowry, "Decoupling
 contention management from scheduling," in ASPLOS XV Proceedings of the fifteenth
 edition of ASPLOS on Architectural support for programming languages and operating systems,
- D. Kimpe, D. Carns, P. H, Harms, K, Wozniak, J. M, Lang, S, and R. B. Ross,
 "AESOP: expressing concurrency in high-performance system software," in Networking,
- Black, D. L, "Scheduling support for concurrency and parallelism in the Mach
- M. Rajagopalan, B. T. Lewis, and T. A. Anderson, "Thread scheduling for
Lean and Efficient Business Tier for Performance Scaling

Index Terms

Computer Science
Distributed Systems
Keywords
layering; concurrency; parallelism; OLTP; CPU affinity; speedup; lean critical path; Architecture; Performance gain;