Abstract

A Wireless Sensor Network (WSN) is a critical network defined with restricted resources and constraints. Wireless Sensor Networks are used in multiple applications like security, military, and health applications. To optimize the network route and network life, under these constraints is always a challenge. In this paper, a multi-parameter-based hop selection analysis-based algorithm is proposed to generate the optimized route over the sensor network based on Residual energy, Failure rate, and sensing range using DLQAR protocol. The number of alive nodes, dead nodes, residual energy, energy consumption terms are used to analyze the proposed algorithm. These parameters dynamically analyze the network route and change the network route as per requirements. The proposed work uses the threshold value to perform the critical node elimination. The results obtained show that the proposed algorithm is better as compared to existing algorithms in terms of alive node, dead node, residual energy, energy consumption.
An Improvement of Network Life Time using DLQAR Protocol in Wireless Sensor Network

- M. M Chandane, "Distributed Link Quality Aware Routung in Wireless Sensor Network", 978-1-4673-0089-6/12@2012 IEEE
- Jiejun Kong, "ANODR: ANonymous On Demand Routing with Untraceable Routes for Mobile Adhoc Networks", MobiHoc '03, June 1–3, 2003, Annapolis, Maryland, USA ACM 1-58113-684-6/03/0006
- Kyu-Hwan Lee, "Routing based Authentication for Mobile Ad hoc Network in Home Environment";
- S. Sathish, "Cache Based Ant Colony Routing Algorithm for Mobile Ad hoc Networks";
An Improvement of Network Life Time using DLQAR Protocol in Wireless Sensor Network

978-1-4503-0449-8/11/02

Index Terms
Computer Science Wireless

Keywords
WSN Routing Constraints Failure Probability