Abstract

LDPC codes provide good random error performance nearer to Shannon limit. The LDPC codes have some residue errors which cannot be corrected even after large number of iterations such errors can be corrected by concatenating LDPC codes with RS codes. This paper describes the development of an iterative decoder scheme for LDPC-RS product codes which made LDPC codes and Turbo codes popular. The iterative structure consists of a soft decision decoding of LDPC codes and hard decision decoding of RS codes. The concatenated scheme provides higher performance than the iterative decoder for LDPC codes. The iterative scheme is developed in MATLAB and FPGA kit is used for practical verification.

References

- D. J. C. MacKay and R. M. Neal, "Near Shannon limit performance of low
Development and Verification of Iterative Decoder for LDPC-RS Product Codes

- David J. C. MacKay, "Good Error-Correcting Codes Based on Very Sparse
- L. Arnone, C. Gayoso, C. Gonzalez and J. Castieira, "Sum-Subtract Fixed Point
- J. Castineira Moreira, M. Rabini, C. Gonzalez, C. Gayaso, L. Arnone, "FPGA
implementation of two very low complexity LDPC decoders," Programmable Logic (SPL),
IEEE Int. Symp, pp. 7-12, April 2011.
soft-input soft-output decoding algorithm for low-density parity-check codes," IET
- Tam Van Vo and Seiichi Mita, "A Novel Error-Correcting System Based on Product
Codes for Future Magnetic Recording Channels," IEEE Trans. Magnetics, vol 47, no. 10,
- Y. Li, B. Liu, B. Rong, Y. Wu, G. Gagnon, L. Gui, et al. , "On the performance of
- S. Lin and D. J. Costello, Jr. , "Error Control Coding: Fundamentals and
- Moon T. K. : "Error correction coding- mathematical methods and
- W. E. Ryan and S. Lin, Channel Codes: Classical and Modern. Cambridge, U. K. :

Index Terms
Computer Science
Software Engineering

Keywords

LDPC-RS SVM EE Log-SP SSD BMA Product codes Iterative decoder