Abstract

Many applications of wireless sensor network such as smart metering, environment monitoring and health care [1] use a large number of sensor nodes, which generate a huge amount of traffic with the specification of the different QoS requirements. Broadband transmission can be achieved through the mobile systems. Long Term Evolution (LTE) is the main efficient broadband technology in current mobile communications. Introducing Wireless sensor networks into the Long Term Evolution (LTE) networks, can be achieved successfully but with some challenges, such as the traffic overload due to a large number of sensor nodes. Traffic scheduling plays an important role in LTE technology; this can be achieved by assigning the shared resources among users in an efficient and optimized manner. This paper discusses the effect of many types of scheduling algorithms on the downlink performance, this can be done in terms of throughput, block error rate (BLER) and fairness measurements using a MATLAB-based system level Simulator is provide which from Vienna University under License Agreement for "Academic Usage" [8]. An effective radio scheduler to optimize the distribution of radio resources among the sensor nodes is also studied. The guaranteed QoS user demands can be considered as a great challenge in the current field of research.
Long Term Evolution (LTE) Scheduling Algorithms in Wireless Sensor Networks (WSN)

References

- 3GPPTS 36. 300v8. 12. 0 Release 8, Evolved Universal Terrestrial Radio Access (E-UTRA) and (E-UTRAN), over all description, Stage 2.

- 3GPP TSG2RAN Meeting #53, 3GPP™ Work Item Description: RAN overload control for Machine2Type Communications" Fukuoka (Japan), 2011.

Index Terms

Computer Science

Wireless
Keywords

LTE WSN scheduling algorithms.