Abstract

Image compression is a widely addressed researched area. Image compression is a key technology in transmission and storage of digital images because of vast data associated with them. Various types of compression methods are present in place. The performance analysis of various schemes to compress a True image in graphical user interface is discussed in this paper. True images can be compressed with the help of same scheme as grayscale images by applying them to each of the three colour components. Experimental results demonstrate that the STW wavelet algorithm is more efficient for PSNR while EZW method provides the better compression ratio.
References

- Archana D, G. S. Shirmewar, Dr. A. K. Sahoo, 2005 "A Comparative Study of DCT, DWT & Hybrid (DCT-DWT) Transform.".
- M. Angelopoulou, K. Masselos, Peter Cheung, 2006 "A Comparison of 2-D Discrete Wavelet Transform Computation Schedules on FPGAs".
- Nageswara Rao Thota and Srinivasa Kumar Devireddy, 2008 "Image Compression Using Discrete Cosine Transform".
- Telagarapu P., Jagan N. V. 20011 "Image Compression Using DCT and Wavelet Transformations".
- Groach M., Garg A, 2012 "Performance Analysis of DC SPIHT and SPIHT Algorithm for Image Compression".
- Mozammel Hoque Chowdhury M. and Khatun Amina, 2012 "Image Compression Using Discrete Wavelet Transform".
- Rajesh K. Yadav, S. P. Gangwar, 2012 "Study and analysis of wavelet based image compression techniques".
- Bhonde N., Shinde S., 2013 "Image Compression Using Discrete Wavelet Transform".
- Sandeep Kaur, Gaganpreet Kaur, 2013 "A Review: Various Wavelet Based Image Compression Techniques".
- Vachak Poonam, Nigam Vineeta S. 2014 "Efficient Architecture for Image Compression for Lifting Based Discrete Wavelet Transform".

Index Terms

Computer Science Image Processing
Keywords

Image compression DWT EZW SPIHT STW PSNR MSE CR