Abstract

In a wireless communication cellular network, call activity can be more intensive in some regions than others. In present scenario of society and city development such as metro-cities and NCR-regions in which, high speed, slow speed as well as pedestrian subscribers are available with high-density may decrease the system performance. Splitting the cell size and reduce the transmission distance is one of the effective technique. But, cell splitting technique does not provide efficient solution in the regions in which high speed, slow speed as well as pedestrian subscribers are available. Deploying the femtocell over cellular networks has recently attracted growing interests in academia, industry, and research places. Deploying femtocells over cellular networks is an attractive solution in current scenario for the improvement of cellular network’s services providing better coverage and speed. Femtocell provides attractive indoor coverage with high throughput and promising satisfaction of subscribers. Coexisting femtocells and cellular networks lead to severe interference scenarios. However, inter cell interference decreases the system performance, capacity as well as throughput. Therefore, challenge still remaining is to efficiently allocate spectrum to this
Rethinking Interference Mitigation Spectrum Efficiency Model in Femtocell Networks using FFR
technology. This paper focuses on interference mitigation techniques in femtocell/macrocell
networks and proposes a fractional frequency reuse (FFR) mechanism that leads to increase
overall system performance. In particular, the mechanism aims to maximize throughput via a
variety of combinations between inner cell radius and frequency allocation to the cellular
networks. Additionally, a position minded frequency allocation to the femtocells targets to further
reduce the cross-tier interference in femtocell networks.

References

1. Vikas Solanki et.at., “Improving the Performance of Handoff Calls using Frequency
2. Vikas Solanki, M. Qasim Rafiq, “Improving the Efficiency of Call Admission Control in
9(3), March 2014, pp. 133-146.
5. O.A Akinlabi, B.S. Paul, M. K. Joseph and H.C. Ferreira, “Indoor Communication:
Femtocell Behavior in an Indoor Environment”, Proceedings of the International
MultiConference of Engineers and Computer Scientists, Hong Kong, Vol II, March 18 - 20,
2015.
femtocells: A downlink system level case study”, 11th IEEE Singapore International Conference
7. G. D. I. Roche et al, “Access control mechanisms for femtocells”, IEEE Communications
Link-Level Inter-Cell Interference in OFDMA Systems”, Proceedings 13th Annual Symposium
49-52.
9. Haipeng LEI, Lei ZHANG, Xin ZHANG and Dacheng YANG, “A Novel Multi-Cell OFDMA
System Structure using Fractional Frequency Reuse”, Proc. IEEE Int. Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC 2007), September 2007.
10. D. Lopez-Perez, G. de la Roche, A. Valcarce, A. Juttner, and J. Zhang, “Interference
Avoidance and Dynamic Frequency Planning for WiMAX Femtocells Networks,” Proc. of IEEE
International Conference on Anti-counterfeiting, Security, and Identification in Communication,
13. H. Chan, C. Hyoung-Kee, and K. In-Hwan, “Building femtocell more secure with
improved proxy signature,” IEEE Global Telecommunications Conference, Nov. 30-Dec. 4 2009,
pp. 1–6.
networks,” IEEE International Conference on Wireless and Mobile Computing, Networking and

17. 3GPP, “Mobility Procedures for Home NodeB; Overall Description Stage 2,” TS 25.367 (release 11), 2011.

Index Terms

Computer Science
Networks

Keywords

FFR mechanism, Femtocell, Cross-tier interference, Co-tier interference, OFDMA.