Abstract

Inrush current is a very important phenomenon which occurs in transformer during energization at no load. It depends on several factors like magnetizing properties of magnetic material, resistant and inductance of primary winding, supply frequency, switching angle of circuit breaker, applied voltage etc. Objective of this study is to estimate the maximum value of transformer inrush current. Measurement of inrush current is difficult issue for large rating of transformer under different switching conditions. Therefore this study is used to demonstrate Artificial Neural Network (ANN) for modeling and simulation. This helps in prediction of maximum inrush current for large rating of transformer. Back Propagation with Levenberg–Marquardt (LM) algorithm was used to train the ANN architecture and same was tested for the various data sets. For effective training of ANN various operating conditions are considered. These are Transformer VA rating, Applied Voltage, switching angle and Remnant flux. This study was carried out to develop ANN model in a generalize manner which can be utilize for predicting maximum value of current and harmonic for any single phase transformer provide core material and frequency remains same.
References


17. Controlled Switching of HVAC CBs—Planning, Specifications & Testing, CIGRÉ SC A3
18. Andreas Ebner, Michael Bösch, Renato Cortesi. “Controlled Switching of Transformers –
effects of Closing Time Scatter and Residual Flux Uncertainty.” IEEE: Universities Power
19. Yunfei Wang, Sami G. Abdulsalam, and Wilsun Xu, “Analytical Formula to Estimate the
Maximum Inrush Current,” IEEE Transactions on Power Delivery, VOL. 23, NO. 2, pp 1266-68,
April 2008.
20. M. G. Vanti, S. L. Bertoli, S. H. L. Cabral, A. G. Gerent, Jr., and P. Kuo-Peng,
“Semianalytic Solution for a Simple Model of Inrush Currents in Transformers” IEEE
Transactions on Magnetics, VOL. 44, NO. 6, June 2008.
22. M. Jamali, M. Mirzaie, S. Asghar Gholamian. “Calculation and Analysis of Transformer
Inrush Current Based on Parameters of Transformer and Operating Conditions,” Electronics
Inrush Current using Neural Network” National Conference ETEIC-2012 Proceedings, pp
296-299, April,2012.
24. Puneet Kumar Singh, D K Chaturvedi, "Neural Network based Modeling and Simulation
25. Yousefizadeh, H. and Zilouchian, A. Neural network structures. In Zilouchian A and
Jamshidi M, editors. Intelligent control systems using soft computing methodologies. Boca
editors. Intelligent control systems using soft computing methodologies. Boca Raton, FL: CRC

Index Terms

Computer Science

Networks

Keywords
Transformer, Inrush Current, ANN, Modeling, Simulation, Harmonic.