Abstract

Inrush current is a very important phenomenon which occurs in transformer during energization at no load. It depends on several factors like magnetizing properties of magnetic material, resistant and inductance of primary winding, supply frequency, switching angle of circuit breaker, applied voltage etc. Objective of this study is to estimate the maximum value of transformer inrush current. Measurement of inrush current is difficult issue for large rating of transformer under different switching conditions. Therefore this study is used to demonstrate Artificial Neural Network (ANN) for modeling and simulation. This helps in prediction of maximum inrush current for large rating of transformer. Back Propagation with Levenberg–Marquardt (LM) algorithm was used to train the ANN architecture and same was tested for the various data sets. For effective training of ANN various operating conditions are considered. These are Transformer VA rating, Applied Voltage, switching angle and Remnant flux. This study was carried out to develop ANN model in a generalize manner which can be utilize for predicting maximum value of current and harmonic for any single phase transformer provide core material and frequency remains same.
References

366-375, Jan. 1944.
(Mexico), pt. A77, pp. 510, July 1977
Single-phase Transformer.” IEEE transactions on magnetics. vol 24. no 6, pp 3217 – 3222,
testing and performance of transformer differential relays” IEEE, Volume: 2, 8-12, pp1142 –
8. K. Yabe, “Power differential method for discrimination between fault and magnetizing
1997.
performance of transformer differential relays” IEEE, Volume: 3, Issue: 4, pp:36 – 420,
protection using transient comparison technique,” Developments in Power System Protection,
transformer differential protection-part I: Problem Statement", IEEE Transactions on Power
phenomena in power transformers using combined wavelet transform and neural network,”
transformer differential protection-part II: relay description and evaluation", IEEE Transactions

Index Terms

Computer Science

Networks

Keywords
Transformer, Inrush Current, ANN, Modeling, Simulation, Harmonic.