Abstract

Nature is a good source of inspirations for us. The algorithms developed from the nature are most powerful algorithms for optimizing many complex engineering design problems having multiple objectives (multi–objective). This paper presents an hybrid algorithm based on Multi–objective Big bang–Big Crunch (MOBB–BC) nature–inspired optimization algorithm with Genetic crossover and Differential evolution (DE) mutation operators for solving the minimum length ruler called Optimal Golomb ruler (OGR) as channel–allocation problem to reduce four–wave mixing crosstalk (FWM) effects in optical wavelength division multiplexing (WDM) systems. The comparative study of simulation results obtained by proposed hybrid Multi–objective BB–BC (HMOBB–BC) algorithm demonstrates better and efficient generation of OGRs in a reasonable computational time compared to simple BB–BC algorithm and one of the existing nature–inspired algorithms i.e. Genetic algorithm (GA). Also, the proposed hybrid algorithm outperforms the two existing conventional algorithms i.e. Extended quadratic congruence (EQC) and Search algorithm (SA), in terms of ruler length and total channel bandwidth.
References

 Channel-Allocation Problem in WDM Lightwave Systems, IEEE Transactions on
 EDFAs: A Review, In Proceedings of the International Conference on Computer and
 Communication Engineering (ICCCE), Kuala Lumpur, Malaysia.
 Allocation for Four-Wave Mixing-Effect Minimization, IEEE Transactions on Communications,
 Vol. 52, No. 12, pp. 2184–2189.
 Four–Wave Mixing Crosstalk in WDM Systems Using Unequally Spaced Channels. IEEE
 pp. 1027–1037.
 Channel Allocation Technique—Part II: In coherent WDM systems. IEEE Trans. Commun., Vol. 46,
 differences and carrier frequency assignments for nonlinear repeaters. IEEE Trans. Commun.,
 Vol. COM-34.
 WDM Channel Allocation. In Proceedings of the 8th Opto–Electronics International Journal of
 Computer Applications (0975 – 8887) Volume 85 – No 9, January 201425and Communication
18. http://theinf1.informatik.unijena.de/teaching/ss10/oberseminar-ss10
 C-28, No. 12, (December 1979), pp. 943–944.
6–12.
40. Project OGR. http://www.distributed.net/OGR.
42. http://mathworld.wolfram.com/PerfectRuler.html
Index Terms

Computer Science

Algorithms

Keywords

Channel spacing, Genetic algorithm, Hybrid Multi-objective Big bang–Big Crunch optimization algorithm, Optimal Golomb ruler.