Abstract

This paper describes the technique of shadow detection properly, this technique can detect both the cast and self-shadow. The method exploits local color constancy properties which are cause of reflectance suppression in excess of shadowed regions. For detecting shadowed areas in a scene, the values of the backdrop image are separated by values of the current frame in the true color (RGB) space. We use all three type of colour space in our work. Illumination map is extracted using a steerable filter framework based on global, local correlations in low and high frequency bands respectively. The lighting and colour features so extracted are then input to a decision trees are designed to detect shadow edges using AdaBoost. The simulation results give us an idea about the performance of the proposed method as good with boundary marking on shadow and nonshadow region with high accuracy.

References

1. H.G. Barrow and J.M. Tanenbaum. Recovering intrinsic scene characteristics from
2. Bousseau, S. Paris, and F. Durand. User assisted intrinsic images. ACM Transactions on
7. X. Jiang, A. J. Schofield, and J. L. Wyatt. Correlation-based intrinsic image extraction
8. J. Joshi and N. P. Papanikolopoulos. Learning to detect moving shadows in dynamic
environments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30:2055–2063,
November 2008.
9. V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph cuts.
12. N. M. Brisson and A. Zaccarin. Learning and removing cast shadows through a multi
distribution approach. IEEE Transactions on Pattern Analysis and Machine Intelligence,
13. Y. Matsushita, S. Lin, S. B. Kang, and H.-Y. Shum. Estimating intrinsic images from
14. Y. Matsushita, K. Nishino, K. Ikeuchi, and M. Sakauchi. Illumination normalization with
time-dependent intrinsic images for video surveillance. IEEE Transactions on Pattern Analysis
from shadows under unknown reflectance and lighting conditions. In IEEE Int’l ICCV, pages
2008.
18. J. Schofield, G. Hesse, P. B. Rock, and M. A. Georgeson. Local luminance amplitude
modulates the interpretation of shape-from-shading in textured surfaces. Vision Research,
20. E. P. Simoncelli and W. T. Freeman. The steerable pyramid: A flexible architecture for
multi-scale derivative computation. IEEE Second Int’l Conf on Image Processing, pages

Index Terms

Computer Science Pattern Recognition

Keywords

Shadow detection, Amplitude Modulation & Luminance Modulation, Colour Feature segmentation and Feature extraction, Illumination Map, Condition Random Field (CRF)