Abstract

The use of Cognitive Radio Network (CRN) for spectrum utilization is very beneficial to address scarcity of frequency spectrum. It can solve the problem of spectrum scarcity. The one of the areas of concern in spectrum sensing is the amount of energy that is consumed in spectrum sensing performed by unlicensed/secondary users. There are many frame structures which are being used for spectrum sensing and they are very capable of performing spectrum efficient and energy efficient spectrum sensing individually, but it does not fulfill the need of modern era where we need a combined spectrum and energy efficient spectrum sensing technique. The proposed time division based frame structure for multiuser CRN is spectrum and energy efficient, it also provides time diversity gain for secondary users by allowing collection of sensing results at different point of time. The simulation result shows that the spectrum utility also increases because of the use of optimal decision threshold for final decision at fusion center. The results also shows that all the secondary users can’t be used for spectrum sensing because it degrades energy efficiency. So it is also optimized that how many secondary users will perform energy efficient spectrum sensing.
References

1. FCC, ET Docket No 03-222 Notice of proposed rulemaking and order, December 2003
generation/dynamic spectrum access/cognitive radio wireless networks: A survey,” Computer
Schedulers for Energy-Efficient Cognitive Radio Networks,” IEEE wireless communications e
letters, vol. 2, no. 3, June 2013
Networks,” IEEE ICC, 2010
5. Stergios Stotas, and Arumugam Nallanathan “On the Throughput and Spectrum Sensing
Wireless Communications, vol. 11, no. 1, January 2012
6. Wenshan Yin, Pinyi Ren, , Qinghe Du, and Yichen Wang “Delay and Throughput Oriented
Continuous Spectrum Sensing Schemes in Cognitive Radio Networks,”IEEE transactions on
wireless communications, vol. 11, no. 6, June 2012
Detection and Interference Management,, http://aravind.kailas.googlepages.com
bandwidth constraints,” In: Proc. of IEEE Wireless Communications and Networking
Conference. 2007. p. 27–32.
10. Hang Hu, Hang Zhang*, Hong Yu, and Yi Chen “Spectrum-energy-efficient sensing with
1065–1072.
11. Tevfik Yucek and Huseyin Arslan “A survey of spectrum sensing algorithms for cognitive
radio applications,” IEEE communications surveys and tutorials .vol.11. no.1, first quarter 2009
selection in cognitive radio networks,” EURASIP Journal on Wireless Communications and
13. Liang YC, Zeng Y, Peh ECY, Hoang AT. Sensing-throughput tradeoff for cognitive radio
14. Mrs. R. S. Kale (Sandikar), Dr. Vijay M. Wadhai, and Dr. Jagdish B. Helonde “Efficient
spectrum sensing in cognitive radio using energy detection method with new threshold
formulation,” International Conference on Microelectronics, Communication and Renewable
Energy, 2013
15. Z. Chair and P. K. Varshney, “Optimal data fusion in multiple sensor detection systems,”
16. Ying-Chang Liang, Yonghong Zeng, Edward C.Y. Peh, and Anh Tuan Hoang, “Sensing
throughput trade-off for cognitive radio networks,” IEEE Transaction on wireless
communications vol.7, NO.4, April 2008.
via Utility Maximization,” Sixth International Conference on Wireless Communications and
Signal,2014.
Index Terms

Computer Science Networks

Keywords

Utility maximization, multi-minislot, spectrum sensing, cooperative spectrum sensing, Utility function