Abstract

Let an injective function $f : V(G) \rightarrow 2X$, where $V(G)$ is the vertex set of a graph G and $2X$ is the power set of a nonempty set X, be given. Consider the induced function $f \oplus : V(G) \times V(G) \rightarrow \{\emptyset\}$ defined by $f \oplus (u, v) = f(u) \oplus f(v)$, where $f(u) \oplus f(v)$ denotes the symmetric difference of the two sets. The function f is called a k-uniform dcsl (and X a k-uniform dcsl-set) of the graph G, if there exists a positive constant k such that $|f \oplus (u, v)| = kd_G(u, v)$, where $d_G(u, v)$ is the length of a shortest path between u and v in G. If a graph G admits a k-uniform dcsl, then G is called a k-uniform dcsl graph. In this paper, we initiate a study on 2-uniform dcsl graphs and we establish a characterization for a graph to be k-uniform dcsl.

References

Index Terms

Computer Science

Algorithms

Keywords

k-uniform distance compatible set-labeling, k-uniform dcsl index