Abstract

Let an injective function \(f : V(G) \rightarrow 2X \), where \(V(G) \) is the vertex set of a graph \(G \) and \(2X \) is the power set of a nonempty set \(X \), be given. Consider the induced function \(f \odot : V(G) \times V(G) \rightarrow \{\Phi\} \) defined by \(f \odot (u, v) = f(u) \oplus f(v) \), where \(f(u) \oplus f(v) \) denotes the symmetric difference of the two sets. The function \(f \) is called a k-uniform dcsl (and \(X \) a k-uniform dcsl-set) of the graph \(G \), if there exists a positive constant \(k \) such that \(|f \odot (u, v)| = kd_{G}(u, v) \), where \(d_{G}(u, v) \) is the length of a shortest path between \(u \) and \(v \) in \(G \). If a graph \(G \) admits a k-uniform dcsl, then \(G \) is called a k-uniform dcsl graph. In this paper, we initiate a study on 2-uniform dscl graphs and we establish a characterization for a graph to be k-uniform dcsl.

References

Index Terms
Computer Science
Algorithms

Keywords
k-uniform distance compatible set-labeling, k-uniform dcsl index