Abstract

Crime detection is the vital and emerging research field in the real world environment which aims to prevent the number of crimes happening in the world. The nature of crime differs in different places based on location, age, religion, habitual characteristics and so on. Mitigating the serial crimes which are identical to each other is the most important scenario to be concerned in the real world. There may be a problem arise while mitigating the hot spots in the different crime locations due to missing values of some important features. Prediction of similar types of crimes also becomes the complex process where the temporal features are scattered. To solve the problem in this work the triangulation based interpolation methodology (TIM) and the graph measures were introduced. The TIM tends to find the missing value among the set of values based on the average level of the most nearer points where the data points are scattered unevenly. And the similarity measures assure the selection of the most nearest neighbour solutions. The similarity measures that are used in this work for predicting the most nearest location with same type of crime behaviour are Distance Measure (DM), Centrality Measure (CM) and Graph Assortativity (GA) measure. The performance evaluations were conducted with
the help of spatio temporal data sets where the list of crimes and the location, behaviour are
depicted properly. The experimental tests conducted proves that the proposed methodology in
this work can mitigate the serial crime hot spots more accurately.

References

1. Hsinchun Chen, Wingyan Chung, Yi Qin, Michael Chau, Jennifer Jie Xu, Gang Wang,
 Rong Zheng, Homa Atabakhsh, “Crime Data Mining: An Overview and Case Studies”, AI Lab,
 University of Arizona, proceedings National Conference on Digital Government Research, 2003,
 available at: http://ai.bpa.arizona.edu/
 implementation and construction of large scale geographic information system.International
 Journal of Geographic Information System
4. Guta R., Rajitha K., Basu S. and Mittal S.; Application of GIS in Crime Analysis: A
 Gateway to Safe City, India Geospatial Forum, 2012
6. M. Vijaya Kumar and Dr. C. Charasekar; Spatial Statistical Analysis of burglary Crime in
8. Jitendra Kumar, Sripati Mishra and Neeraj Tiwari; Identification of Hotspots and Safe
 K. Elleithy (ed.),” Computing Sciences and Software Engineering, PP. 405-409
 Investigation: An Overview", Journal of Environmental Science, Computer Science and
 Engineering & Technology, Vol.1, Issue.2, PP.124-131
11. John David Elijah Sandig, Ruby Mae Somoba, Ma. Beth Concepcion and Bobby D.
 Gerardo, 2013," Mining Online GIS for Crime Rate and Models based on Frequent Pattern
 Analysis”, Proceedings of the World Congress on Engineering and Computer Science, Vol.2,
 PP.23-27
 of Crime with Series Finder”, Twenty-Seven AAII Conference on Artificial Intelligence,
 PP.140-142.
13. Kate Bowers, J., Shane Johnson, D., and Ken Pease ,2004,“Prospective Hot-Spoting
 Data Mining and Geographical Information System”, Int J of Statistika and Mathematika, ISSN:
 2277-2790 E-ISSN: 2249-8605, Volume 8, Issue 1, PP 05-09.
16. Xiang Zhang et al., 2010, “Detecting and mapping crime hot spots based on improved
 attribute oriented induce clustering,” IEEE International conference on Geoinformatics, PP.1-5.
 Hotspot Mapping" ,National Institute of Justice ,US Department of Justice,Office of Justice
Programs, United States of America.

25. M. Vijaya Kumar and Dr. C. Charasekar; Spatial Clustering Simulation on Analysis of Spatial-Temporal Crime Hotspot for Predicting Crime activities, IJCA, 2011.

Index Terms

Computer Science Security

Keywords

Spatio temporal data, Interpolation, Graph distance measures, hot spots.