Abstract

Experimental investigation for small horizontal portable wind turbine (SHPWT) of NACA-44, BP-44, and NACA-63, BP-63 profiles under laboratory conditions at different wind velocity range of (3.7-5.8 m/s) achieved in present work. Experimental data tabulated for 2, 3, 4, and 6-bladed rotor of both profiles within range of blade pitch angles (β=10°, 20°, 30°, 40° and 50°). A mathematical model formulated and computer Code for MATLAB software developed. The least-squares regression is used to fit experimental data. As the majority of previous works have been presented for large scale wind turbines, the aims were to present the performance of (SHPWT) and also to make a comparisons between both profiles to conclude which is the best performance. The overall efficiency (η) and electrical output power (P_o) affected by changing blades number and (β). The best (η) for both profiles of 2 and 3-bladed rotor occurred at (β=30°) and NACA-44, BP-44 profile was better than NACA-63, BP-63 profile. The best η for both profiles of 4-bladed rotor occurred at (β=20°), and NACA-63, BP-63 profile was better than NACA-44, BP-44 profile. The best (η) of 6-bladed rotor occurred at (β=20°) for NACA-44, BP-44
profile and at (β=10°) for NACA-63, BP-63 profile, clearly NACA-44, BP-44 profile was better
than NACA-63, BP-63 profile. Finally, the maximum value of mean overall efficiency was
(\eta=31.1813 \%) concluded for NACA-44, BP-44 profile of 6-bladed rotor at (β=20°).

References

1. Ravi Anant Kishore, and Shashank Priya, "Design and experimental verification of a high
efficiency small wind energy portable turbine (SWEPT)", Journal of Wind Engineering and
Small Wind Turbine power curves obtained in laboratory. 2010 International Symposium on
Computer, Communication, Control and Automation.
3. Dongxiang Jiang, Qian Huang, and Liangyou Hong, 2009. Test System of a Small Wind
Turbine under Laboratory Conditions. IEEE 2009 World Non-Grid-Connected Wind Power and
control of a small wind turbine by using PSIM., 2014 International Automatic Control Conference
(CACS), November 26-28, Ambassador Hotel, Kaohsiung, Taiwan.
of PMSG in South of Algeria. 2012 2nd International Symposium on Environment-Friendly
Energies and Applications (EFEA), Northumbria University.
horizontal axis wind turbine", Journal of Wind Engineering and Industrial Aerodynamics 92
Wind Turbines in Low Wind Speed Areas. IEEE Transactions on Sustainable Energy, VOL. 4,
NO. 1, January 2013.
9. Jong-Woong Park, Hyung-Jo Jung, Hongki Jo and Billie F. Spencer, Jr., "Feasibility Study
of Micro-Wind Turbines for Powering Wireless Sensors on a Cable-Stayed Bridge", Energies